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PREFACE

This repoit was prepared at Logicon RDA as part of RDA's technical support to DNA
under the SETA contract (DNA001-88-C-0046). Paul Senseny (DNA/SPSD) served as technical
monitor. The report relies hLavily on analysis performed by fotir contractors and a government
laboratory under DNA funding, also monitored by Dr. Senseny. The analyses by RE/SPEC was
performed under subcontract to SwRl, and was monitored at SwRI by Ben Thacker. The analysis
by Itasca was performed under subcontract to Weidlinger Associates.

The author would like to thank a number of other people for technical and editorial
contributions to this report. Above all, the benchmark study participants-Loren Lorig (Itasca),
Francois Heuze and Ronald Shaffer (LLNL), John Osnes (RE/SPEC), Yoshio Muki and Marvin
Ito (CRT), and Felix Wong and Darrent Tennant (WA)-have been most helpful and willing to
supply information when asked. Those individuals and Da,,id Vaughan (WA) graciously wrote
the appendices describing their organizations' numerical approaches. Liz Garnholz (RDA)
cheerfully digitized countless curves and prepared most of the figures. Eric Furbee (RDA)
contributed some of the figures. Anita Gigliello and Kip Radler (RDA) helped with the final
preparation of the document.

The numerical work by LLNL and the contractors was mainly performed between
February and July 1991, reviewed and discussed at three meetings during that same time span,
and summarized in a series of briefing packages distributed at the time by RDA. The numerical
results reproduced here came for the most part from those briefing packages. The problem
defintionn and requested outputs had been spelled out in detail in a series of memos from
Dr. Senseny and-in one case (problem 2-S)---by the author. In stveral cases some of the
requested outputs were missing from one or more participant's presentat;oll. Except in one
instance where a part of the package had been mislaid, the author c-hose tu work only with the
available information. Thus when comparisons are presented among vairicus calculations, results
may be missing for a particular organization. The reason is that the results had not been
submitted in ihe first place, although usually no specific remark to that effect will appear in the
text.
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CONVERSION TABLE

Conversion factors for U.S. customary to metric. (SI) units of measurement

To Convert From To Multiply

angstom meters (in) 1.000 000 X E-10
atmosphere (normal) kilo pascal (kPa) 1.013 25 X E+2

bar kilo pascal (kPa) L.M 000 X E+2
barn meter2 (m2) 1.000 000 X E-28

British Thermal unit (thermochemical) joule (JM 1.054 350 X E+3
calorie (thermochemicai) joule (JM 4.184 000

cal (tbermochLnicJll/cm2  megajoule/mn(MJ/m 2 ) 4.184 000 X E-2
curie giga becquerel (GBqr 3.700 000 X E+I
degree (angle) radian (rad) 1.745 329 X E-2

degree Fahrenheit degree kelvin (KW t,-=(to" + 459.67)/ 1.8
electron volt joule MI 1.602 19 X E-19
erg joule (J} 1.000 000 X E-7

erg/second watt (WM 1.000 000 X E-7
foot meter (m) 3.048 000 X E-1
foot-pound-force joule (J) 1.355 818

gallon (U.S. liquid) meter3 tm3) 3.785 412 X E-3
inch meter Wml 2.540 000 X E-2
jerk joule J 1.000 000 X E+2
joule/kilogr.Am (J/Kg) (radiation dose
absorbed? Gray (Gy) 1.000 000

kilotons terajoulea 4.183
kip (1000 lbfl newton MN) 4.448 222 X E+3
kjpltnch 2 (kal) kilo pascal (kPa) 6.A94 757 X E+3

ktap newton-second/m 2 (N-a/m 2) 1.000 000 X E+2
micron meter Wma 1.000 000 X E-6

mil meter (mr) 2.540 000 X E-5
mile (international) meter (m) 1.609 344 X E+3

ounce kilogram (kgl 2.834 952 X E-2
pound-force (lbf avoirdupois) newton (Ml 4.448 222

pound-force inch newton-meter (N-m) 1 129 848 X E-l
pound-force/inch newton/meter (N/m) 1.751 268 X E+2
pound-force/foot 2  kilo pascal (kPal 4.788 026 X E--2
pound-force/Inch2 (p,%) kilo pascal (kPa 6.894 757
pound-mans |Ibm avoirdupois) kilogram Ikg) 4.535 924 X E-1
portnd-mans-foot2 (moment of inertia kilogram-meter2 lkg-lm2) 4.214 O1l X E--2

pound-mass/foot3  kilogram/meter 3 (kg/m 3 ) 1.601 846 X E*I
rad (radiation dose absorbed) Gray (Gy)" 1.000 000 X E-2
roentgen coulomb/kilogram (C/kg) 2.579 760 X E-4
shake second (s) 1.000 000 X E-8

slug kilogram (kg} 1.4.59 390 X E+I

torr (mm Hg. 00CM kilo pascal (kPa) 1.333 22 X E-1

"The becquerel (Bql is the Sl unit of radioactivity: Bp = I eventla.

"•The Gray (Gy) is the SI unit of absorbed radiation.
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SECTION 1

INTRODUCTION

1.1 BACKGROUND AND OBJECTIVE.

In 1989 the Defense Nuclear Agency (DNA) initiated the Underground Technology
Program (UTP), a multi-year investigation into the vulnerability of underground structures. The
program includes calculations, material modelling, laboratory testing, and field testing all aimed
at improving the ability to predict the response and failure of underground structures subjected
to ground shock due to near-surface explosions. The emphasis is on deeply buried tunnels with
little or no reinforcement. The focal point of the program is a field test to be conducted at
Ft. Knox, wherein a buried high-explosive charge wili be used to load various deeply buried
structures in a saturated limestone formation.

During the course of the UTP at least five different organizations have been engaged in
numerical modelling of various aspects of the relevant dynamic processes. Each organization has
its own preconceptions about how best to construct these models. In order to explore the
influence of the particular computational approach on the outcome of the numerical simulation,
DNA conducted a "benchmark calculation' exercise. Several idealized problems were. defined,
and each participating organization was asked to apply its computational tools to generate certain
specified outputs. This report summarizes the results of that activity.

Large rock masses inevitably contain discontinuities which are referred to as joints. In
many cases they occur in one or several parallel sets with individual joints spaced at regular
intervals. The numerical treatment of the combined effect of motion across joints and
deformation of the intervening conitinisous blocks poses a formidable challenge. Most of the
participants use two general, complementary approaches: explicit, in which the motions across
the joints and the deformations within the blocks are represented separately; and implicit, wherein
a single, effective medium is defined so as to deform on the average like an assemblage of blocks
and joints1. An implicit model, once defined, can be (and was in this study) used just like any
other material model in a general purpose finite-element or finite difference code, while explicit
models require special treatment. The model types are complementary in the sense that when
applied to tunnel failure problems, the implicit models--which are more computationally efficient-
suffice in regions remote from the tunnel, while the explicit ones-which are locally more
accurate-must be used near the tunnel if the details of individual block motions are to be
captured. As expected, the approaches to joint modelling provided the most stark contrasts
among the participants.

1Jn this report the terms explicit and implicit will always refer to the method for representing
joints. They will not refer to the time integration scheme, except in the following sentence. All
participants used explicit time integration.

LI



1.2 SCOPE.

Table 1-1 contains a summary of the problems posed in the UTP benchmark calculation
exercise. More precise definitions will be given later, when each problem is discussed in detail.
Problems I-IN and 1-IM exercise the intact (unjointed) and implicitly jointed material
respectively over the same simple strain path. Problems 2-EX and 2-IM contrast the explicit and
implicit treatment of a jointed sample over a simple strain path. IP1roblem 2-S is the first one to
cause shearing displacement across the joint. It was solved explicitly by most but implicitly by
one participant. Problem 3 is the first one where dynamics and large-scale spatial variation come
into play. It tests compatibility between adjacent regions of expiicitly and implicitly jointed
material. Problem 4 represents the way a "real" tunnel failure problem might be modelled, and
provides a platform for comparing the tunnel deformations computed by the various schemes.

Table I-1. The UTP benchmark problems.

Problem Abbreviation Geometry Loading
Name1 

7

1-Intact 1-IN Single element, no joints Quasi-static strain path
representing spherically
divergent flow

1-Implicit 1-IM Single element with two Same strain path as 1-IN
perpendicular joints

2-Explicit 2-EX "Stack of bricks," i.e., Quasi-static uniaxial strain
several continuous compressicn and unload
horizontal joints, several
staggered vertical joints

2-Implicit 2-IM Same as 2-EX, but Same as 2-EX
modelled implicitly

2-Shear 2-S Two triangular blocks Quasi-static boundary
separated by 3 joint displacements consistent with

uniform plane strain, designed
to cause joint slippage

30 3 Wedge section of annulus, Dynamic radial stress pulse on

modelled implicitly, inner boundary
except for inner region,
modelled explicitly

4 4 Same as 3 but lined tunnel Same as 3
within inner region

Table 1-2 lists the organizations and some of the individuals who participated in the
exercise. It also contains the names of the codes used to perform the calculations. The only

2
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ones which are generally available are PRONTO (through Sandia National Laboratory) and

UDEC (through Itasca for a fee); the others are proprietary.

Table 1-2. Participants in the UTP benchmark calculational exercise.

Organization Abbreviation Point of Code
Contact

California Research and Technology CRT Y. Marvin Ito EXCALIBUR

Division, The Titan Corporation

Itasca Consulting Group, Inc. Itasca Loren Long UDEC

Lawrence Livermore National LLNL Francois Heuze DIBS
Laboratory

RE/SPEC Inc. RE/SPEC John Osnes PRONTO

Weidlinger Associates WA Felix Wong FLEX

Logicon R & D Associates RDA Don Simons Exact Solutions

A few brief remarks about the various approaches may be of interest at this point. All
except Itasca and LLNL use finite elements to represent the rock as a deformable continuum;
Itasca uses finite difference elements while LLNL treats the rock as rigid and approximates the
rock's deformability by modifying the stiffness of the joints. All except CRT use some form of
a slide line as part or all of their explicit joint model; CRT uses a special finite element. CRT
has the most sophisticated implicit model, one which admits arbitrary constitutive behavior in
both the intack rock and joint, and by enforcing internal compatibility and stress equilibrium
derives a super-element representing the combined deformation due to both joints and intact rock.
WA and Itasca's implicit models are isotropic elastic-plastic, while CRT and RE/SPEC's are
anisotropic. Since the rock in this study contains two orthogonal joint sets, the large-scale rock
mass behavior will be orthotropic (see Section 4.3.3). The latter two implicit modelling
approaches have the potential to represent features of the deformation and stress fields peculiar
to anisotropic media.

No further attempt will be made at this point to describe the details of these codes'
treatments of the benchmark problems. Instead, each organization has prepared its own
description which is included in this report as an appendix.

3



SECTION 2

GENERAL SPECIFICATIONS

2.1 GEOMETRY.

For those problems involving joints (all except I-IN), a tunnel (4), or complex
computational meshes (3 and 4), certain geometric parameters are standardized as shown in
Table 2-1. Problems 3 and 4 are in plane strain, with a wedge-shaped mesh bounded by circular
arcs of radii 450 and 550 m, a symmetry line through the tunnel location, and a ray at an angle
of tan'1 0.1 = 5.71 (making the mesh 50 m wide at the tunnel location). An inner, rectangular
region extending 12.5 m in each direction from the tunnel location is modelled explicitly; the
rest, implicitly.

Table 2-1. Standardized geometric parameters.

. Dimension [Symbol Value

JitJoint Spacing S I mn

Joint Thickness 6 5 mm__ __ I JontSacn IS 5mm..

Range of Tunnel Ro 500 m

Tunnel Tunnel Diameter D 5 im

Liner Thickness T 50 mm

Cl Discrete Jointing Zone L 25 m
Mesh Mesh Height H 100 m

Mesh Divergence 0 tan" 0.1

2.2 MATERIAL MODELS.

The intact rock is treated as an isotropic, linear elastic and perfectly plastic material, with
parameters summarized in Table 2-2. The plastic portion has an associated flow rule on a fixed
(i.e., non-hardening) two-invariant stress surface fitted to a Mohr-Coulomb failure condition in
triaxial compression. (This is sometimes called a Mises-Schleicher material.)

4
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Table 2-2. Material properties.

Property Symbol Value

Intact Mass Density p 2500 kg/m3

Intact Young's Modulus E 30 GPa

Intact Poisson's Ratio v 0.25

Intact Cohesion c 4.5 MPa

Intact Friction Angle 250

Intact Dilation Angle 250

Intact Tensile Strength T 2 MPa

Joint Normal Stiffness kN kN - 62 kPa/m

(6 -u,)
2

Joint Shear Stiffness ks 1.25 GPa/m

Joint Cohesion c J 0

Joint Friction Angle 0 20°, except 300 in problem 2-S

Joint Dilation Angle I 0

Liner Young's Modulus EL 200 GPa

Liner Poisson's Ratio VL 0.30

liner Yield Strength CyL 400 MPa

Liner Mass Density PL 7500 kg/m3

To be more specific, the failure condition in terms of the principal stresses 01,02,03

(assumed positive in compression) can be written

f(olO2,o3) - 34/ - (a +bp)2 - 0 , (2-1)

2 222where 3J' - 01+02+03-0102-0203-130l and p - (01+02+03)/3 . When this is fitted to
a Mohr-Coulomb failure criterion in a state of triaxial compression (o 2-oc3<ol) we find the
relation between (ab) and (0,c) to be

a- 6ccos , b 6sin4o (2-2)
a 3 _ sino b-3 - sin(

For the parameters given in Table 2-2 we have a=9.49 MPa, b=0.984.

5



This material specification is adopted for its computational simplicity. However, it is
unphysical in that it leads to excessive dilatancy when compared with the response of real rocks.
This needs to be kept in mind when assessing the results of problem 4, where-perhaps contrary
to intuition, although not to certain lab and field observations-all calculators except one will be
seen to predict that the tunnel suffers a decrease in the length of its springline (horizontal
diameter). The one exception-LLNL--did not model the rock as a continuum and consequently
could not possibly represent its plastic response accurately.

The joint behavior is also assumed to bc clastic-plastic with a constant friction angle.
However, the normal (opening/closing) elastic behavior is nonlinear, and the inelastic behavior
is non-dilatant. The liner is elastic-perfectly plastic with a Mises failure condition and flow rule.
Joint and liner property values are also listed in Table 2-2.

6
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ŽiCT1MON 3

STATEMENTS AND RESULTS FOR PROBLEMS WITH ANALYTICAL SOLUTIONS

3.1 ANALYTIC TREATMENT OF MATERIAL RESPONSE.

The first five problems (see Tab'e 1. 1) -re quasi-static ones driven by boundary
displacements which are consistent with homogeneous (uniform) %train throughout the region of
interest. This does not mean that the actual strains will be uniform.; if there are joints then actual
strains will not be uniform. But in fact the stresses and strairis in ýhe intzct rock and joint
material will separately be homogeneous at each point of the imposed strain path. This opens
the possibility of direct analytical solution of these problems for comparison with numeriral
results.

Another way of viewing the situation is that each of these probl'ms i-'cduces to nothing
more than finding the response of a single implicit elenicat around a specified strain path. This
is strictly a material response question; equations of motion or compatibility among eiemernts play
no role whatsoever. It is curious to note that only one of the participants (CRT) produced single-
element solutions to all of the first five problems.

All five of these problems can easily be written in terms of principal
stresses oaoo03 and strains E11,2 ,E3 . Also, in no case will any strain exceed three percent,
so a small-strain analysis is sufficient. As usual, the strain increments are decomposed intc
elastic and plastic parts

dE e - + d4P), (3-1)

with similar forms for da2 and dE3 . The elastic increments follow Hooke's law

df(e) - [tdoI -v(do2_do3] (3-2)

with similar forms for the other two components. The elastic response is easily invertible:
E(1 -) [ .... (d dE

do1 - (1 -v) [d(e)+ ,(e) (e) (3-3)

If f(o 1,o2,o3 )<0, then the entire response is elastic and Eq. (3-3) fully describes the intact rock
deformation. Moreover, since the coefficients are constant, Eq. (3-3) can be integrated by
inspection over any change in strain.
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The plastic increments follow from the associated flow law applied to the yield
function (2-1):

de = Xf=(34
I -f Iay -Ao1-(o)+(7 3) -Y 1 (3-4)ao1

where X is a constant (to be determined) and similar formulas obtain for the other components.
In (3-4) the constants a,,Py are given by

a = 2 P J+2b 22ab 3-5)99 -3

with (a,b) given by (2-2). When the intact rock is plastic, total strains are the sum of (3-2) and
(3-4). An additional condition is that of continued yielding, which can either be written as
Eq. (2-1) or

df= "f d01+ Of d o2+ Of dq =0 , (3-6)001 Oo% 003

where the derivatives are given by formulas like the square-bracketed quantity in (3-4). The
three principal stress increments can be found in terms of principal strain increments and current
stresses by solving the system of ten equations (3-1), (3-3), (3-4), (3-6) in the ten
unknowns do1 , d), d4'P), X . We will defer this step until discussing specific problems.

It will be useful to represent the joint normal response in terms of stress. According to
Table 2-2 the joint stiffness is

kN do A
dk j- (6u)2  (3-7)

where A=625 kPa-in and uj = joint closure. This can be rearranged to give

A du,
do =_ _

(6 -Uj) 2

This can easily be integrated, g;ving

CF Au.
(6 -us)b

8



which can be inverted to give

620
Uj = A+ub

The stiffness (3-7) can now be written in terms of stress:

kN =1I( , C) 2 (3-8)

3.2 PROBLEM 1-IN: SPHERICALLY DIVERGENT STRAIN PATH IN INTACT ROCK.

3.2.1 Statement of the Problem.

An intact rock sample is strained uniformly and quasi-statically along a strain path w:#;,
two equal principal strains. This represents a spherically symmetric deformation, where the two
hoop strains c9 are equal and generally different from the spherical radial strain F",. The
geometry and strain path 2 are shown in Figure 3-1. The first leg is nearly uniaxial

-0.0-00 ......... ........ ..................... ...... .......... ....

S= -0.04 , ...-...,.. ..... 1 ................. ......... .. ......... i....

-0.00• •.......

0.00 0.10 0.20 0.30

Figure 3-1. Geometry and loading in problems 1-IN and I-IM.

21n this p'ot as well as throughout this report, strains and stresses are taken as positive in

compression.
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compression and represents the passage of a shock front. During thet second !eg, tensile hoop
strain accumulates due to outward radial displacement. In the third leg, the radial strain is fully
relieved but a residual tensile hoop strain remains. The problem is to find the stresses at each
point along the given strain path.

3.2.2 Analytic Solution.

Let o1 0=r and 02=03=09 be the spherical radial and hoop stresses respectively, and
similarly for strains. From (3-2), the elastic response is

S-1 (do, -2vd), [(1 -v)do o-vdor, (3-9)

with the inverse

d E[(1 -v)de) +2vdc0 )] E(dFs0e) +VdEr (3-10)
doyr = r,0doe0=.(10 r3-)

(1 +v)(1-2v) (1+v)(1-2v)

In the elastic regime these equations govern the full response.

From (3-5) the plastic strain increments must obey

-r')=2X( _b)3 cprOI ') 0 -~pr= (3-11)

The differential form of the continuing yield condition (3-6) reduces to

(1 - b)dor-(1+2bld°de = 0 (3-12)

Equations (3-9), (3-11), and (3-12) combine with the two independent forms of (3-1) to provide
seven linear equations in the unknowns (dE•), de(e), dc), dE), , or doo, X) . They can ber1 0 r 1 0
solved for the stress increments during plastic loading, giving

dor = E(3 +2b)[(3 +2b) dar +2(3 -b) dE0 ]

27(1 -2v) +6b 2 (1 +v)

do0 = E(3 -b)[(3 +2b)der +2(3 -b)dc0 ] (3-13)

27(1 -2v) +6b 2(1 +v)

Note that with the given yield function and flow rule, not only the elastic formula (3-10)
but the elastic-plastic one (3-13) as well are linear with constant coefficients. Thus as long
as dEo/dEr is constant, the finite stress increments obey the same equations as the infinitesimals.

To compute the evolution of stresses along the strain path of Figure 3-1, we must proceed
in steps, beginning with elastic response. On the initial leg OA we have d~o/dEr = -1/30

10
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The stresses at any point along the leg are those at the beginning-O in this case-added to the
increments. Combining this strain increment ratio with (3-10) we find

Oe 30v-1 0.2954. (3-14)
dor 30-32v

This holds until yielding, and in this case gives the ratio of stresses themselves since they both
started at 0. For this axisymmetric stress state the yield condition (2-1) can be recast

f = Ior-ol - •+b (2orr+Oo)] -0 (3-15)

Equation (3-14) and (3-15) solved simultaneously give the stresses at first yield, labeled point
Al in Table 3-1. The strains at this point follow from (3-9).

Table 3-1. Analytic solution to problem 1-IN.

Radial Hoop pressure Stress Radial Hoop

Stress Stress Difference Strain Strain Volume
Point Time p GO Strain

oi, °0 (MPa) rpren) eret
(MPa) (MPa) (MPa) (percent) (percent) (percent)

0 0. 0. 0. 0. 0. 0. 0. 0.

Al 0.49 51.9 15.3 27.5 36.6 0.148 -0.005 0.138

A 1. 104.8 26.8 59.5 68.0 0.3 -0.01 0.28

B 2. 62.5 19.6 33.9 42.9 0.23 -0.07 0.09

BI 2.59 9.2 -2. 1.7 11.2 0.095 -0.088 -0.08

B2 2.59 10.2 0. 3.4 10.2 0.095 -0.088 -0.08

B3 2.76 -2. 0. -0.7 -2. 0.054 -0.093 -0.13

134 2.76 0. 0. 0. 0. 0.054 -0.093 -0.13
stanpt sl op oIj . 0. o. ! ___

LE__ 3. _ 0. 0. 0. 0. 0. -0.1 -0.2

Once yielding occurs, equations (3-13) obtain. These two equations together with the
strain-path slope E/E. -= -1/30 give the remaining response on leg OA as a function of
(say) dEr, and the final value er = 0.3 defines point A.

When the strain path direction changes at point A, we can tell if the next increment is
elastic or plastic by supposing that it is elastic ("taking a trial elastic increment"), in which case

11
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from (3-10) with deo/dcr=6FI we find d0o/dor=31/33. With or>o0 and b=0.984 the
increment in the yield function (3-15) would be

df = d'r 2b - (3)1 ] b - 0.904do. (3-16)

With dor<O the trial increment would cause f to go positive, which is prohibited; therefore leg
AB must start with an elastic-plastic increment. Starting from the known state at A, as before
we use (3-13) and the strain-path slope deo/d.r"=6/7 to find the changes in stresses as a function
of (say) der. Provided the tensile failure criterion is not met, the response will continue in the
elastic-plastic mode until the next change in strain-path direction.

The tensile limit is given as 2 MPa, but no other details of the tensile failure law are
specified. In this analysis we assume this limit applies separately to each principal stress, and
once it is exceeded, that stress is set to zero.

Tensile failure therefore does not occur before reaching point B, so we can fill in the state
at B according to elastic-plastic response.

The beginning of leg BC is treated the same as was AB, and is likewise found to be,
elastic-plastic. As before, the strain and stress increment ratios give the direction of the stress
path, and the starting point is known from the previous leg. The hoop stress is the first to reach
the tensile limit. Here the hoop stress changes abruptly from -2MPa (point B1) to 0 (point B2),
while the radial strain remains fixed. The macroscopic hoop strain also stays fixed, but after
cracking, it will contain a portion due to the crack, while the intact material will contract in the
hoop directions. Assuming the stress adjustments during crack formation are elastic, from (3-9),
with dEr =-0 and do0 = +2 MPa we find dor =1 MPa. This completes the state at B2. (A
yield function check verifies that the stress adjustment was indeed elastic.)

The next leg is (as a trial) taken to be elastic, with o0= 0. Equation (3-9) then
giving dor-=-EdEr. Radial tensile failure occurs as or reaches -2 MPa at point B3. Now the
radial stress also drops to 0 (point B4) with no change in macroscopic strain, and remains there
until the end of the strain path at point C.

3.2.3 Numerical Solutions.

The compressibility and stress paths from the various numerical solutions to problem 1-IN
are shown in Figures 3-2 and 3-3 respectively. The most obvious feature of these comparisons
is the inadequacy of the LLNL approach for representing stresses in intact rock. It has the wrong
stiffness, volumetric hysteresis, and stress path over the full duration of the problem. Among the
other curves. up to the point of tensile failure, all agree well except for slightly low unloading
pressures in the CRT model. The final leg of the compressibility curve suggests that all the
numerical models except RE/SFEC's used a criterion based on pressure rather than principal
stress, and that after tensile failure some held the pressure at the cutoff value rather than fixing
it at 0. Differences in intact rock tensile failure models are probably of negligible consequence
to tunnel failure in jointed media.

12
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Figure 3-2. Intact rock compressibility in problem 1-IN.
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Figure 3-3. Intact rock stress path in problem 1-IN.
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3.3 PROBLEM 1-IM: SPHERICALLY DIVERGENT STRAIN PATH IN IMPLICITLY
JOINTED ROCK.

3.3.1 Statement of the Problem.

The only difference between this problem and the previous one, problem 1-IN, is the
material, which now contains two perpendicular joint sets modelled implicitly. One joint set is
assumed to be normal to the r-direction (horizontal in Figure 3-1). Joint properties are given in
Tables 2-1 and 2-2.

3.3.2 Analytic Solution.

The introduction of impiicit jointing profoundly affects the solution in several ways: by
compounding the rock and joint response in each individual direction, by introducing nonlinearity
on account of the joint's nonlinear normal stiffness, and by upsetting the axisymmetry on account
of the effective anisotropy induced by the joints. The principal stresses still align with coordinate
directions and joints, so there are still no shear stresses or shear displacements across joints, and
it still suffices to consider only the normal stresses, strains, and displacements.

For this discussion, let the z-axis align with the r-direction and the normal to one joint
set, and the x-axis with the other joint set. Consider the displacement increments for a single
joint and intervening intact rock (i.e., a 1-m cube):

dd

dux = du + dux - w, dcx + x
kx

du~ = du~ w (3-17)

duz ~du1 + du1  ze + Ldo
kz

where superscripts I, J refer to intact material and joints respectively, and w L- w, = w. = 1 m,
The joint thickness has been neglected compared with the block width in relating intact rock
strains to the corresponding displacements. Recall that the joint stiffnesses kr , k. depend
respectively on the stresses ax , z according to (3-8). Combining (3-17) with the elastic
constitutive law (3-2) gives

14

• • Q• • •• • "



kV jdcN Edu, 38

sym m etric .. 11u,

Wz *J

This system of three linear equations must be solved simultaneously to get the elastic stress
increments corresponding to given displacement increments duX, duy, duz . The system as a
whole is nonlinear, because the joint stiffnesses, and consequently the coefficients in (3-18),
depcad on the current stress level.

Three of the equations governing stress increments in the plastic regime are found by
combining the elastic strain increments (3-2) with the plastic ones (3-4) and substituting the sum
into (3-17). A ncw unknown X has been introduced, and the fourth and last required equation
is the condition of continuing plastic yielding (3-6). The partial derivatives take the form of the
square-bracketed quantity in (3-4). The resulting system of four equations in four unknowns is

_ -V -V E[aox-P(o+cF)-y] dl x

"+ Ed1 -v E[a a3 -l(X+o)-Y] 'oyt +--(319)

symmetric ... O

where in the axisymmetric problem at hand we have dux/wx duy/Wy= dee, dU z/Iwz -dEr .
Note that the matrix in (3-19) is symmetric. This is a consequence of the associaited plastic flow
law.

Either system (3-18) or (3-19) could be inverted in closed form if desired. However, the
stress dependence of the resulting expressions for the stress increments would render them very
difficult if not impossibie to integrate in closed form. Therefore it was decided to perform both
the inversion and the integration numerically. The procedure for each time step is as follows:

15
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jp
(1) Solve the elastic equations (3-18), using current stresses, for trial stress increments

due to current displacement increments. Note that overall strain increments in the
problem specification (Figure 3-1), when applied to the 1-m cube, are numerically
equal to the displacements in meters appearing on the right-hand sides of
equations (3-18) or (3-19). A crude predictor-corrector is effected by updating the
stresses and then re-solving the equations.

(2) Check whether the yield criterion is violated by the current stresses augmented by
the trial increments. If not, the current increment is elastic and the computed trial
values are retained as actual values.

(3) it the current state is elastic but the trial values violate the yield criterion, linearly
interpolate back to the p'ace where fO0. reset the time axis to this point, and move
forward from there with a plastic increment based on equxations (3-19).

(4) If the current state is plastic, first conduct an elastic trial as above. If the trial state
is elastic, update immediately (no interpolation is needed); if not, compute a
plastic increment from (3-19) and update immediately.

It was not deemed of sufficient interest to pursue this computation beyond tensile failure,
so it was simply terminated when any principal stress reached the tensile limit. The results are
given with the numerical solutions in the following section.

3.3.3 Numerical Solutions.

Only CRT and RE/SPEC submitted numerical solutions to this problem. Because it is not
axisymmetric, the stress difference o -o, is not equal to (3J2)lf2 , so three plots of results
are given. Figures (3-4), (3-5), and (3-6) indicate that prior to tensile failure, both numerical
results are quite close to the analytical one. After that, altnough the analytic solution has not
been carried this far, CRT's compressibility curve cannot be correct, since it does not terminate
at a volumetric strain of -0.2 percent. However, as noted, this portion of the curve is not of
particular interest in this problem.

3.4 PROBLEMS 2-EX AND 2-IM: UNIAXIAL STRAIN OF A "STACK OF BRICKS".

3.4.1 Statement of the Problem.

A 4-by-5-by-l-m volume is filled with 1-m cubes of rock separated by joints as shown
in Figure 3-7. There are no joints parallel to the plane of the figure. Five sides have roller
boundaries. The top is displaced vertically and quasi-statically as indicated in the figure, while
shear traction is held at zero. Half-thickness joints separate full blocks from the three roller
boundaries normal to the plane of the figure.
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Figure 3-4. Implicitly jointed rock compressibility in problem 1-IM.
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Figure 3-7. Geometry and loading in problems 2-EX and 2-4M.
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3.4.2 Analytical Solution.

No distinction between implicit and explicit rock models needs to be made for the purpose
of deriving the analytic solution to this problem. The stated conditions lead to stresses and
strains identical to those in an infinite region with the same joint spacing and homogeneous
macroscopic strain. The principal directions of the geometry will coincide with principal
directions of stress and strain. Equations (3-18) and (3-19) from the previous section govern a
single, representative 1-m cubic element under these conditions. (The staggering in the jointing
only affects deformations at a much higher level of accuracy than considered here.) Therefore,
the analytic solution to this problem follows exactly the same procedure as problem 1-IM. The
only difference is the right-hand side of (3-18) or (3-19), where now du, = du = 0, and (for
a single 1-m element) u, will increase quasistatically up to 0.3 cm and then decrease to zero.
The results of the step-by-step numerical integration are shown in Figures 3-8 and 3-9.

3.4.3 Numerical Solutions.

Figures 3-8 and 3-9 also show the compressibility and stress path according to the various
explicit numerical joint models. In each plot two curves stand out. The LLNL model again has
incorrect stiffness, hysteresis, and deviator stresses. It does appear to agree with the initial slope
of the compression loading curve, but not to stiffen on loading as it should due to the joint's
nonlinear elastic compressive behavior.

The WA model has incorrect stiffness and excessive numerical chatter. The reason for
the former is that in the joint treatment used in this problem, joint stiffness was fixed solely by
numerical considerations related to the detection of and compensation for node penetration across
joints. There was no other mechanism to include a specified normal joint stiffness, so it was
ignored. The required numerical stiffness appears to have been much greater than that specified
for the joint, leading to stiffer overall response. That the WA stiffness is roughly twice the
correct value is consistent with the fact that at least according to specifications in the elastic
regime, the contributions of the intact rock and joints to the overall stiffness are about equal.
Subsequent to this calculation, the joint model was modified to admit a specified normal elastic
stiffness in place of the former, numerically driven value.

The excessive chatter in both compressibility and stress path in the WA calculation is also
caused by the joint model. WA explicitly modelled every individual block and interface shown
in Figure 3-7. Subsequent to this problem, WA modified the treatment of joint forces at the
corners of blocks and believes that these modifications are responsible for the improvement in
the model's behavior in subsequent problems. (Appendix E contains a brief description of the
modelling approach and the modifications.)

Numerical results for problem 2-IM are shown in Figures 3-10 and 3-11 together with the
analytical solution. Again, only CRT and RE/SPEC submitted solutions based on implicit joint
models, and both agree closely with the analytical results.
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Figure 3-9. Stress path in problem 2-EX.
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3.5 PROBLEM 2-S: SHEAiRING OF TWO TRIANGULAR BLOCKS SEPARATED BY A

SINGLE JOINT.

3.5.1 Statement of the Problem.

Since none of the foregoing problems exercised the joint in shear, this problem was
devised to do just that, and to do so while maintaining a homogeneous strain state in the intact
rock. Two blocks cf intaci rock are separated by a diagonal joint as shown in Figure 3-12.
Plane strain applies out of the plane of the figure. Normal displacements are imposed on the
upper and right-hand faces, while maintaining zero shear traction. The remaining boundaries are
rollers. As a function of time in arbitrary units, the displacements are given in Table 3-2, with
linear variations between tabulated values. The displacements follow the path indicated in the
figure. The objective is to find the stress histories in the block. The problem is to be solved
with an explicit joint model, but an implicit model may be tried in addition.

Ul 4

3 .......... .. .

2 ....... . . ..... ......

I &2 I
1 m U: i ! i

-0.! 0.0 0.1 0.2 0.3 0.4

Ul+ u, (CM)

Figure 3-12. Geometry and loading in problem 2-S.
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Table 3-2. Imposed boundary displacements in problem 2-S.

Time
(Arbitrary U1  U2

units) (m) (m)

0 0 0

1 0.0001 0.0001

2 0.0187 -0.0153

3 0.0175 -0.0165

4 0.0005 0.0005

5 0 0

3.5.2 Analytical Solution.

3.5.2.1 Outline of the solution procedure. The problem will be treated by an
incrementally linear scheme. At the beginning of each time step the stresses, boundary
displacements, total joint slip, and pending displacement increments are known, and the stress
increments and total joint slip increment are to be found. Once the increments are found, the
corresponding quantities are updated and the process repeated.

For quasi-static deformations, this problem can be put into the same form as the more
conventional one of elastic-plastic deformation with two intersecting, non-hardening failure
surfaces. One surface is the standard one for the intact material; the other is the locus in stress-
space of points satisfying the conditions for Mohr-Coulomb frictional slip. Plastic flow in intact
rock is associated, while the effective plastic strain due to joint slip is not associated with the
joint failure function. Table 3-3 lists the four potential deformation modes, and assigns a name
and number to each.

Table 3-3. Potential deformation modes in problem 2-S.

Mode number Mode name Intact responseI Joint response

1 EE Elastic Elastic (not slipping)

2 EP Elastic Plastic (slipping)

3 PE Plastic Elastic

4 PP Plastic Plastic
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For each potential mode, a corresponding set of stress increments can always be obtained.
The formulas will be given below. If the problem is well-posed, then one and only one of these
four sets will be admissible, because together they comprise all of the possibilities. The criteria
for admissibility are that the stresses at the end of the increment be inside or on the appropriate
failure surface~s), and that the plastic strain increments for the active plastic mode(s) be in the
correct direction. The former requirement is equivalent to the negativity or vanishing of the
failure function f 1 or fJ. For the intact rock, the latter requirement is that the proportionality
constant X! relating plastic strain increments to stress derivatives of the flow potential, be
positive. For the joint, the condition is that the increment of slip must be in the same direction
as the total shear stress across the joint. While no analytical proof of uniqueness is available,
it will be found numerically for the prescribed boundary displacement history that at every time
step there is one and only one admissible solution among the four alternatives.

The computational procedure for each time step will begin with the evaluation of a
number of "trial" increments, the number and type depending on the location of the stress point
at the start of the increment. 3 Specifically, only increments of types which cannot be ruled out
a priori, based on the starting point, will be considered. For example, if the starting point is EE,
i.e., both failure functions are negative and the stress point is inside both failure surfaces, then
only an EE increment need be considered. If starting with an EP stress state, where the stress
point is on the joint failure surface but inside the one for intact material, the increment must be
either EP or EE. If a trial increment causes the stress point to cross a failure surface, then linear
interpolation is used to shorten the current time step such that the stress point will be right on
the failure surface at the end of the time step. This ensures that only a single deformation mode
occurs during the entire time step.

Table 3-4 is a road map of the entire computational scheme. The second column lists the
types of trial increments that cannot be ruled out a priori for each starting stress point location
(column 1) and are therefore computed and checked for admissibility. Conditions for
admissibility are listed in the third column in terms of failure functions and plastic flow
proportionality constants. (Although we will not explicitly write the joint slip increment in the
form of a constant multiplying the gradient of a flow potential, it could be done. In the table,
" V.J* > 0 " is simply shorthand for "the slip increment is in the same direction as the total shear
stress across the joint.") The superscript "*" refers to a trial value, so for
example ft, =fJ(o+do*) where a is the stress at the start of the time step and do* is the
trial stress increment. The fourth column indicates the final resolution for the time step, based
on which pair of admissibility conditions holds. In some cases the trial increment itself becomes
the actual stress increment. In others, where the trial increment caused the stress point to cross
a failure surface, an interpolation based on failure function values is applied to scale back both
the stress increment and the time step such that the end point is just on the failure surface(s).

3These "trial" increments should not be confused with the trial elastic increment used in most
explicit dynamic codes.

24

• • •• • •• •



Table 3-4. Road map for computational scheme used in problem 2-S.

Stress state at Trial increment Admissible Action if Stress state
start of time types outcomes (see condition in at end of
step note A) column 3 holds time step

EE EE f 1*<O, f*<O do--do" EE
f1 *<O, fj*>O do=-•do EP

f*>O, f4*<O do=f?/do" PE

fr>O, f J*>0 (See note B) EP or PE

EP EE f*<O, f*<O do---do" EE

__ >Of'<o da- 1do" PE

EP f*<O, ?*>O do--do* EP

f'*>O, k'*>O do=fda* PP

PE EE fl*<O, fJ*<o do=do EE

f'<O, f4>O da=o/do" EP

PE W'>O, f'e<O do--do" PE

_ _">O, fj1 >O do=O/do" PP

PP EE fI*<o, fl*<O do--do" EE

EP ft*<O, A!*>O do--do" EP

PE x0>0O, f-*<O da=do" PE

I JI
PP W1">0, kJ>0 doy--ao PP

Note A: For uniqueness, only one of the four conditions will hold.

Note B: This condition, corresponding to an EE starting point very near the
intersection and a strain increment outside both surfaces, never occurred but
could be handled if necessary.
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For example, the constant 01 , which must fall in the range (0,1), is defined by

f 1(c +do ) -fl(3)

Finally, the last column shows the location of the stress point at the end of the time step.

3.5.2.2 Analytical preliminaries. As before, we decompose the displacements into parts
separately due to intact material and the joint:

1 I I I

z = +z ="Z +; , =U =0 (0-20)

where the last relation expresses the plane strain condition in the uNJ,
absence of any joints normal to the y-axis. As indicated by the
vector diagram in Figure 3-13, the parts of the total displacement
due to motion across the joint can be further decomposed into Uzi
components normal and tan gential to the joint. These are
respectively denoted uN (positive in compression)
and us (positive when the upper block moves down and to the

right), and are given by UXJ

J J J J- UN US I u N -- (3-21) Figure 3-13. Decomposition
SF2 of joint displacements

The symmetries of this problem guarantee that the only nonvanishing stresses in the x-y-z
coordinate system are the normal stresses in the coordinate directions. By a 45-degree cw
coordinate rotation, these give rise to the following normal and shear stresses across the joint:

O Oz + °x - Oi 0 z-Ox A(
ON = 2 o 9 = - (3-22)2 '2 2'

In view of the form of (3-22) and other factors that lead to later simplification, we will
regard the fundamental stress unknowns to be 5, Au, o. , and will seek equations for the
increments in these quantities in terms increments in the correspondingly defined quantities
uAu, uy(=O).
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In preparation for that, by combining equations (3-7), (3-8), (3-21), and (3-22), the joint
response law can be written in the form

J J J Je
du + dux+ duN, du

2

dAu .du- dux = V~du V2+(dm +ddiP) dAo + 3w• 2i (33
Z S S S ~~F2ks S (-3

EI

kN= uA

where a superscript p denotes the contribution of "plastic" or slipping joint behavior. Similarly,
by using equations (3-2), (3-4)e and (3-22)i the intact material response can be written

du I+ dux

2

( 1-v)da -vdc - -
W E Y W~5Po+CY-1 (-4

dAu1 I duz - dux' = dAu + dAu 1P = w' EdAo + 3WXA!A

duy dule d'yP -2v da- doY.+W [c -2Z-y=0

If the intact material is in the elastic regime, equations (3-24) still obtain, but with ~!0

In the next four subsections we will combine and solve these equations for each possible
mode of deformation as summarized in Table 3-3. Once the four types of solutions are derived,
they are used as the basis of a computer program which implements the logic embodied in
Table 3-4.

3.5.2.3 Solution for mode 1 CEE) increments. For mode 1 (purely elastic response),
equations (3-23) with vanishing joint slip increment (dUJ' =0 )and (3-24) with no intact rock
plasticity ( 2=0 ) combine to give
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dE du dAu- _ _ _ _ _ , dAo = _ __ _

1-v- 2V2  1 +vE F2kN E F2ks (3-25)

do., - 2vdo- , du dAo

Note that in mode 1 the increment in joint shear displacement dUsj is explicitly determined by
the joint constitutive law through the shear stiffness ks.

3.5.2.4 Solution for mode 2 LEP)P increments. For mode 2 there is still no intact rock
plasticity (X, 0) but now the joint is slipping (du4P i 0) . The joint constitutive law no
longer explicitly governs the incremental shear stress-shear displacement across the joint.
Instead, the Coulomb friction law relates the shear and normal stress across the joint:

Pf- J2 J2

(Ys) -( OA') - 0, (3-26)

where the coefficient of friction is related to the friction angle by 1i - tan C. The overall
response equations analogous to (3-25) follow from (3-23), (3-24), and (3-26):

do - , dAo - sgn(Ao)2,d•y
1 -v - 2v2  1

W_ +
E F2"kN (3-27)

do, -2vdo- , duJ-I'(d,&u - W 1 Vd Acy S V72 E )

3.5.2.5 Solution for mode 3 (PE) increments. In mode 3, the plastic proportionality
constant W! becomes an additional unknown. The first three equations governing the basic
unknown increments are obtained as before by combining (3-23) and (3-24), but now
with V # 0 . An additional equation comes from the condition of continued yielding (3-6). In
matrix form the equations are
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1-v 1 0 wvaB-p(+a,)-,] dW + • 0 -W-ww[iy-A F y) nd u
E •F2kN E

0 w lv+ 1 0 3wAo dAo dAu
E 2 dks=

_2 0 1 aOy -2P5 -y ddy 0
E E

,.[a•a - l( + ay) - y] 3A----y aory -2P5 - y 0 0.
2

(3-28)

We have elected to solve this set numerically during each time step when required, rather than
explicitly.

3.5.2.6 Solution for mode 4 (PP) increments. In mode 4 both the intact material and the
joint are failing. The fundamental unknowns are taken as the three stress increments, A! , and
the joint slip increment dup . The equations governing the stress increments follow as before
from (3-23) and (3-24). The fourth equation is the condition of continued intact material yielding
(3-6). The fifth is the differential form of the joint failure condition (3-26), which was already
used for mode 2 and appears as the second of equations (3-27). When assembled into matrix
form the equations are

1-v+ 1 V w[a00 0-(+Oy)- A 0 ,5 du
E F2 kN E

o +v +1 3 dAo dAu
0 w 1 +v 0 3wAcy r o ~

E + r2 ks

-2 0 1 acy, - 2P3i - y 0 c
E E-

3Ao clXI~y 02-[acy - P3 (FY + cyy) - y] Ma acy - 2Pi - y 0 00

-2p sgn(Ac) 1 0 0 0 U 1 ' 0

(3-29)

3.5.3 Analytical and Numerical Results.

In addition to the analytic solution just outlined, complete solutions using explicit joint
models were submitted by CRT, WA, and Itasca. A partial solution was completed by LLNL
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I

RE/SPEC encountered problems with the PRONTO code-to be discussed later-and could not
generate a meaningful solution. The lone numerical solution with implicit jointing was by CRT.
It gave results which with one exception-to be discussed later-were visually identical with
CRT's explicitly jointed solution, so only the latter will be plotted.

The zoning used by CRT, Itasca, and LLNTL was the simplest possible choice-single
zones for each triangular block and an explicit model of the joint. On the other hand, WA broke
the structure into 54 zones with six adjacent to the joint on each side.

Figures 3-14, 3-15, and 3-16 contain the numerically predicted compressibility, stress path,
and joint shear displacement vs shear stress along with the analytic solution. The figures show
that from this perspective the numerical results that were provided are fairly close to the analytic.
Several features of the WA computation of net compressibility in Figure 3-14 deserve mention.
It begins with the correct slope but remains linear over most of the duration of compressive
loading. The treatment of normal joint stiffness was modified between this problem and the
earlier ones such that it was now adjustable, but still restricted to linear behavior. This solution
also contains much less residual pressure at the end of the calculation, indicating that for some
reason there was not enough dilatancy occurring. Note also that the LLNL result in Figure 3-16
is fairly accurate, indicating that this kinematically-based approach can provide reasonable results
for certain portions of some problems.

40
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• ~."
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0
0.00 0.10 0.20 0.30 0.40

Volumetric strain (percent)

Figure 3-14. Overall compressibility in problem 2-S.

30

® • •• • •• •



50

CRT

40 W A ...... ..............

~I Itasca
(030 ------

exact

0

20 ...

0 10 20 30 40
Pressure (MPa)

Figure 3-15. Von Mises effective stress path in pi )blem 2-S.
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Figure 3-16. Joint shear displacement vs shear stress in problem 2-S.
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Figure 3-17 shows the deformation mode vs time for those who provided this information.
It is interesting to note that both CRT and Itasca predict a short episode of mode 4 (PP) response
starting around t=1.8, while the analytic solution does not. This is where the CRT implicit
solution differs from explicit. The former stayed in mode 4 for only one time step, thus agreeing
most closely with the analytic one. From a practical standpoint, in this particular problem, the
discrepancy is of little significance; the stresses and strains in the four solutions are very close
to one another. However, this still raises some perplexing questions. On one hand, two
conscientious, meticulous calculators independently have reached the same result with their
explicitly jointed models; on the other hand, the scheme detailed in Section 3.5.2, for numerically
evaluating the analytical solution, has been designed to probe all possible evolutionary paths from
each stress point and to test each one for admissibility. At every stage, this scheme has identified
a unique admissible stress increment. In particular, in the analytic solution (and effectively in
the CRT implicit solution), the stress point approaches the intersection between the two failure
surfaces, moves right up to it (by interpolation), and then moves directly across it, while the two
explicit numerical solutions predict a short traverse along the intersection. In the numerical
scheme for the analytic solution, an increment along the intersection (mode 4 or PP) was one of
the four which were explicitly tested for admissibility (see the last four rows of Table 3-3). It

analytic

4 (P) CRT

Itasca I
4..

(P E ) . ......... ........................ ..... .. ... . ..... .... .......................

S2 (EP)

1 (E E ) .. .............. ...... ...... ...... .. . .....................

I I

0 1 2 3 4 5
Pseudo-time

Figure 3-17. History of deformation mode in problem 2-S.
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was found to lead to a joint slip increment opposite the prevailing shear stress across the joint,
and so was deemed inadmissible. It is also interesting to note that the elastic trial increment
from this point gave rise to trial stresses which violated both failure conditions (and was ruled
out for that reason). This is not the same as the elastic trial used by the numerical solutions4.
Nevertheless, one might speculate that the numerically derived trial stresses in the explicit models
also violated both failure conditions and that this somehow initiated the excursion along the
intersection of the failure surfaces. It may then have taken these methods a number of time steps
to recognize and correct for joint slippage opposite the shear stress across the joint.

3.5.4 Why PRONTO Was Not Applicable to Problem 2-S.

RE/SPEC elected always to treat the elastic properties of joints implicitly, i.e., by
smearing them out and distributing them in the surrounding intact material. Only the Coulomb
slip is represented explicitly. This may be reasonable if there are many such joints, but with just
a single one it leads to difficulties when the joint is inclined. The problem stems from the fact
that the RE/SPEC approach makes the surroundings behave like a transversely isotropic material,
with the primary material axis aligned normal to the joint(s). In problem 2-S this axis is 45
degrees from the geometric axes. To see the effect of this misalignment, consider the situation
before any slippage occurs. The two triangular blocks are acting as a single, continuous square
one. Because of the anisotropy, the specified boundary conditions (constant normal
displacements, vanishing shear traction) are not consistent with a homogeneous stress state within
the block. In other words, with no shear traction the block would suffer a shear strain and would
require linearly varying normal boundary displacements to maintain homogeneity; conversely,
a particular value of shear traction could be applied which would cause shear strain to vanish.
Therefore, when RE/SPEC set up and ran this problem with the specified boundary conditions,
the stress state was nonuniform from the very beginning. Later the situation got even worse,
because the joint failure condition was not met simultaneously all along the joint, not even
approximately. Because the nonuniformities were traceable to particular features of the RE/SPEC
approach in a way that was not anticipated when the problem was defined, it was decided not
to pursue the solution to its conclusion with this method.

4For this problem, the trial elastic stresses used in the numerical solutions come from strains
within each element which depend in part on internal (non-forced) nodal displacements, projected
from the previous time step by forward differences based on the momentum balace equations.
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SECTION 4

PROBLEM STATEMENTS AND RESULTS FOR TWO-DIMENSIONAL PROBLEMS

4.1 PRELIMINARY DISCUSSION.

The problems treated so far could be classified as both static and "zero-dimensional,"
since their underlying solutions have neither essential temporal nor large-scale spatial variation.
As we have seen, this simplicity makes analytic solutions possible, and those have been used as
ground truth for assessing the numerical results. In contrast, problems 3 and 4 have fields which
vary both spatially and temporally. Analytic solutions are not generally feasible, and the proper
procedure for assessing the accuracy of numerical solutions is much less obvious. In this study,
we have tried to use all of the tools available to evaluate the numerical solutions, but none of
them is as definitive as a full analytic solution would be. So we check for internal consistency,
compatibility with the basic understanding of wave propagation processes, robustness of the
method as revealed in the zero-dimensional problems, and comparison with the other solutions.
We can perform limited analytical solutions, for example taking numerically computed
macroscopic strains as input and deriving intact rock response analytically. In the end we will
form some judgments about the relative credibility of the various solutions to these particular
problems. But such judgments cannot ever be definitive for problems with no complete analytic
solution.

5

4.2 PROBLEM 3: DIVERGENT WAVE PROPAGATION THROUGH A JOINTED ROCK
ISLAND.

4.2.1 Statement of the Problem.

This problem concerns deformations of a wedge-shaped section of an annulus in plane
strain, as shown in Figure 4-1. The entire region contains vertically and horizontally jointed rock
as specified in Tables 2-1 and 2-2. The top edge (the inner arc) is loaded with the pressure pulse
shown in the figure, while shear tractions are zero. (The pulse approximates that at a 500-m
range from 1/3 MT of coupled nuclear energy). The left and right sides have roller boundaries,
making the left side a plane of symmetry (the right side is not, because the effective anisotropy
due to jointing makes the material unsymmetric about that plane). The lower edge (the outer arc)
is a transmitting boundary. Most of the region is to be modelled implicitly, except for a
rectangular region extending 2.5 tunnel diameters (12.5 m) in all directions from the on-axis point
at R=500 m. This region is to be modelled explicitly, in anticipation of the tunnel situated here
in problem 4. The problem is to find stresses, velocities, and strains throughout the region.

5Some individuals believe that numerical methods can be "validated" by comparison with
experiments. Whether or not this is true is mainly a matter of definition. But in this study, using
data is not an option. All the material models are highly idealized and not intended to accurately
represent real material behavior.
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Figure 4-1. Geometry and loading in problem 3.

When this problem was originally set up, a gravitational prestress was proposed. This
seemingly innocuous requirement led to both philosophical disagreements and computational
difficulties, and was eventually discarded. In principal, given a material model and some
assumption about the lateral lithostatic stress, it is straightforward to define the gravitationally
induced stresses at any depth in a half-space, then translate those to a set of boundary tractions,
body forces, and stresses in the wedge-shaped region of problem 3. Modelers should have been
able to impose these loads as initial conditions, then proceed forward with the active loads and
boundary conditions applied relative to the initial state.

In practice, most of the modelers were unable to proceed as above without either
extensive code modifications or separate off-line calculations. Some could not impose body
forces, some could not impose the necessary shear tractions on those boundary segments that
were neither vertical nor horizontal, and some could not switch the character of the boundary
conditions between the initialization phase and the dynamic loading. A compromise approach
was to ignore body forces and boundary shears, and impose only a normal traction on the upper
boundary arc as the initial condition. But even if the lower boundary could have been made to
switch character (statically a roller, dynamically transmitting), the vanishing shears on the slanted
right-hand edge and upper arc would have led to an initial stress state unlike the intended one.
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Furthermore, even if a reasonable initial stress state could have been defined, the introduction of
a tunnel in problem 4 would have raised a whole new set of issues, differences of opinion, and
difficulties. For example, one point of contention would have been whether to impose the
prestress after the tunnel is emplaced, or to computationally "excavate" the tunnel in an already
prestressed rock mass. In light of all the potential pitfalls, the limited insight into real
computational differences that would have been gained compared with the effort that would have
been required, and the small anticipated impact on the results even if the loads were imposed
correctly, the gravitational prestress was abandoned.

4.2.2 Physical Effects Observed in the Numerical Solutions.

The gross features of the numerical solutions are quite consistent with each other and with
ex"pectations. Above all, there is very little variation in the stress and deformation pulses over
the computational grid, except for temporal offsets which are fully consistent with anticipated
wave propagation speeds. The on-axis vertical stress and velocity at the center of the grid are
shown in Figures 4-2 and 4-3. Note the small attenuation in peak stress that has occurred from
the top edge, where the applied peak was 100 MPa, to the center, where peaks of 99.1, 94.1,

120 : '
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Figure 4-2. Radial stress at tunnel location in problem 3.
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Figure 4-3. Radial velocity at tunnel location in problem 3.

94.7, and 100.8 MPa were reported by CRT, WA, Itasca, and RE/SPEC. Attenuation can be
traced either to geometric divergence or material dissipation. The pure geometric divergence of
the region over this range is slight: R -12 is only 5 percent smaller at the center than the top.
Furthermore, the effective anisotropy induced by the joints might be focussing energy in the
downward direction.

Note that the LLNL approach produced a fairly accurate velocity pulse. This is probably
a reflection of the fidelity of the overall uniaxial compressibility as lumped into the joints.

Another indicator of divergence is the post-peak shape of the strain path. Figure 4-4
shows calculated strain paths at R=500 in, 0=2, in implicitly jointed rock. They present a
macroscopic view of the deformation of a homogeneous effective medium with the properties of
intact rock and joints combined and smeared out. In this medium, as in any homogeneous
medium under rapidly rising but slowly decaying divergent dynamic loading, the strain path is
almost purely uniaxial up to the initial peak (i.e., very little hoop strain), but on unloading the
hoop strain becomes increasingly negative (tensile) as outward radial displacement accumulates.
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Figure 4-4. Strain path at 500-m range, 2 degrees off axis, in problem 3.

Because the medium is a composite (of joints and intact rock), the foregoing observations
do not fully reveal the material's deformation under divergent wave loading. In particular, while
the macroscopic response is mainly uniaxial strain on loading, the intact rock constituent
undergoes substantial hoop expansion at the same time. This is illustrated in Figure 4-5, which
shows Itasca's calculated on-axis strain paths both above and below the upstream and
downstream edges of the explicitly modelled region. In the implicitly jointed material the first
leg is uniaxial strain compression; the second, simultaneous hoop and radial expansion, and the
third (with some imagination) pure radial expansion. On the other hand, in the intact rock most
of the hoop expansion occurs during the first leg along with the radial compression. This effect
is exaggerated by the particular constraint conditions of this planar model, and may not be
generally representative of three-dimensional divergent wave propagation. Here, through a
Poisson effect, the out-of-plane, plane strain constraint makes the intact rock behave more stiffly
in the plane. When compressed radially (vertically) it develops compressive hoop (horizontal)
stresses which are larger than they would be in the absence of the out-of-plane constraint. The
larger compressive stresses are transmitted directly into the vertical joints. Because the
constrained intact rock is stiffer than the joints, the joints compress and the intact rock expands
horizontally.
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Figure 4-5. On-axis strain paths in implicitly jointed and intact rock, analytic solution and
Itasca calculation, problem 3.

Figure 4-5 also shows an analytic representation of this effect. The light solid curve
labelled "input for analytic solution" is simply an idealization of the two Itasca strain paths in
implicitly jointed rock. This path was used as input into a calculation using the machinery
developed for problem 1-IM, i.e., a homogeneous block of implicitly jointed material was
homogeneously strained according to the prescribed path. The heavy solid line is the
corresponding strain path in intact rock. Note that it agrees well with the numerical results in
both magnitude and shape. The kink in the loading leg signals the onset of plastic flow. The
fact that the two kinds of paths end up at about the same point is related to the fact that during
this deformation the joint behaves elastically, so when the stresses become very small the joints
return to near their original dimensions and the residual strains are mostly confined to the intact
rock.

Returning to the matter of dissipation, in this problem it could arise either from intact
rock plasticity or joint slip. The kinematic constraints and loading virtually preclude joint slip.
Plasticity begins part way through the loading phase, which macroscopically is essentially
uniaxial strain. On unloading, the small geometric divergence does increase the deviatoric stress
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over that which would occur in pure uniaxial strain, and this enhances the plasticity. To illustrate
this, Figure 4-6 shows the stress path at a typical on-axis point from all the numerical
calculations, compared with the analytic result for uniaxial strain up to about the same peak
strain. (The latter comes from the general solution for problem 2.) For both strain paths
plasticity begins at a pressure of about 15 MPa and continues up to peak stress. But on
unloading, the deviator stress (3J2 is much greater at the same pressure in the divergent
problem than the uniaxial one. The divergence, though small, is sufficient to cause the unloading
to be predominantly plastic, following along the failure surface, while by comparison it remains
elastic in the uniaxial case.
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Figure 4-6. Stress path at 487-m range on axis in implicitly jointed rock in problem 3.

With all this plasticity, why then isn't there more attenuation due to dissipation? The
main reason is dilatancy, which tends to offset the deviatoric dissipative losses with volumetric
expansion against a positive pressure. This is illustrated in Figure 4-7, which gives the pressure-
volume paths computed in adjoining zones in the implicitly and explicitly jointed rock. Dilatancy
causes a larger final volume than initial, corresponding to negative volumetric dissipation (the
area between the loading and unloading curves). Net volumetric work is being done by the
material. The difference between the two sets of curves in Figure 4-7 is that the one in the
explicitly jointed region represents local volumetric strain in the intact rock only, while the other
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Figure 4-7. Compressibility at 487-m range on axis in problem 3.

set shows overall volumetric strain including the portion due to the joints. (There is only one
value of pressure; it is the same in intact rock as in implicitly jointed rock.) The volumetric
strain due to the joints is entirely elastic, positive, and recoverable (compressive), while tihe intact
material contributes a positive elastic portion and-after the onset of plasticity at about 15 MPa
pressure-a negative (expansive) plastic dilatant portion. Under the constraint conditions here,
at low pressure the elastic volumetric strain in intact rock is about one third of the total elastic
strain. This fraction increases as the joints stiffen with pressure (in the limit of very large
pressure the joints would become rigid and all the elastic strain would be in the intact rock). The
dilatancy accumulates continuously during both the post-yield portion of the loading phase and
the plastic portions of the unloading. Referring to Figure 4-7, during )oading the dilatant volume
strain is the horizontal distance between the actual curve and the extrapolation of the initial
(elastic) part to higher pressures. During unloading, the additional dilatant volume strain is the
horizontal distance between the unloading and loading curves. At the same piessure, these
horizontal distances should be the same in the implicit curve as the intact one, since there is no
plasticity in the joints. Consequently, the areas representing work done by the material will be
the same regardless of which type of pressure-volume curve is used.
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4.2.3 Numerical Issues.

This problem was specified to have a nonreflecting boundary at the lower edge of the
grid. It is well known that no all-purpose absorbing boundary is possible. However, in this
problem practically all of the motion is normal to the boundary and the material is almost elastic,
so in principle it is possible to meet the specified condition very accurately. One obvious way
to evaluate the absorbing boundaries is to examine stress pulses at various locations for reflected
signals. Figure 4-8 shows radial stress pulses at three ranges for each calculator who submitted
the data. The data from RE/SPEC show clear evidence of a fairly strong reflection, and a little
analysis of the timings shows that it has to come from the bottom edge of the grid. The
explanation is that the PRONTO formulation requires compressional and shear wave speeds, and
computes them without accounting for the anisotropy introduced into the implicitly modelled
surroundings by RE/SPEC's "compliant joint" model. Thus with incorrect wave speeds a
spurious reflection is generated. RE/SPEC did not directly remedy this error during the course
of this study, although this problem was rerun with an extended grid such that no bottom
boundary reflection reached the region of interest during the time of interest.

100 100
1-%0 CRT :'RE/SPEC

4 5Q 10 0

820 80' ....<

J __51015(150 100 150
Time (ins)

100 100
WA 8..[Itasca

80 1.. .. ...... . . 80 ......

60. . . . . . .................... -- .........

400 .... 40 .....

50 100 150 50 100 150
0 150

Figure 4-8. Radial stress pulse shapes at 480, 500, and 520-m ranges in problem 3.
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A related issue concerns the continuity between the implicitly and explicitly modelled
regions. In principle the boundaries should be invisible to waves which are long compared to
joint spacing. In this problem the rise time is 10 ms and the loading wave speed is about
2.5 m/ms, so the stress rise-the shortest feature of the wave-is spread out over about 25 m.
Since the joints are only 1 m apart one would not expect to see much effect of the
implicit/expiicit boundary. In Figure 4-8 there is no obvious sign of reflections from these
boundaries. Another diagnostic of possible material discontinuity is the difference in computed
horizontal stres pulses on either side of the boundary; they should be equal. These traces at the
downstream, on-axis discontinuity are shown in Figure 4-9. None of the calculations gives a
perfect match, but CRT and RE/SPEC are quite close, while WA and Itasca differ by 20 percent
or more over most of the pulse. The discrepancy may be relatea to the fact that both WA's and
Itasca's implicit models are isotropic (Appendices D and E), while as noted above the overall
behavior of the jointed rock mass is orthotropic. Note, however, that by adjusting Poisson's ratio
even an isotropic material could be made to give nearly the correct coupling between horizontal
and vertical stresses and strains, and therefore to provide the same horizontal stresses in the
implicitly and explicitly jointed regions when the wave traverses that boundary. Apparently WA
and Itasca used some other criterion for selecting the material properties in the implicitly jointed
region. The orthotropic elastic idealization is discussed further in Section 4.3.3.

40 40
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~'2 ~.: ....... 20.........
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I I :
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40 40iasc
3Implicit WA 3 Itasca

2. 7. ................. 20 .. ..-.. . .........

10 '" 10

.. :.. ... ---
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Figure 4-9. Hoop stress at 512-m range on axis, implicit and explicit region, problem 3.
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4.3 PROBLEM 4: LINED TUNNEL IN A JOINTED ROCK ISLAND SUBJECTED TO
DIVERGENT WAVE PROPAGATION

4.3.1 Statement of the Problem.

The geometry and loading in this problem are shown in Figure 4-10. They are precisely
the same as problem 3, but now there is a lined tunnel in the center of the rock island. The
properties of the liner have been listed in Tables 2-1 and 2-2. Calculators were asked to provide
many diagnostics of tunnel and surrounding medium response, some of which will be discussed
here.

The LLNL methodology has no intrinsic mechanism for representing Poisson effects, i.e.,
horizontal stresses caused by vertical strains. Therefore, in some cases, two different solutions
are presented, one with no horizontal stress, and a second with an externally imposed, constant,
horizontal stress of 33 MPa. Unless otherwise noted, the LLNL results are for the nonvanishing
horizontal stress.

*,,Source 120 -* -* -. " .

'I c. (t) Not to Scale
r ..100......! ~100

500 m 12.5 m R 80 .........
Rock Island

Explicitly Jointd J0e . .........

Rock R
70 -_..

20 4 6 .8 100.120

Transmitting Boundary Time (ms)

Figure 4-10. Geometry and loading in problem 4.
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4.3.2 Physical Effects Observed in the Numerical Solutions.

To begin this discussion, some general observations will be made. The incident pulse was
analyzed in problem 3 and is shown in Figures 4-2, 4-3, and 4-8. It propagates at about
2.5 m/ms with little change in shape. Thus the leading edge of the pulse arrives at the tunnel
location about 20 ms after application to the rock island boundary, and the peak, about 10 ms
later.

It has been noted both in experiments and calculations that tunnel deformations are
generally more severe under divergent wave loading than uniaxial loading to the same peak
stress. Conventional wisdom holds that in divergent flow the post-peak radially outward motions
cause rapid circumferential unloading, "loss of confinement," and consequent reduced strength
around the tunnel, compared with unidirectional flow. We have already seen in problem 3 that
the macroscopic free field strain path in this geometry does include post peak hoop expansion
(Figures 4-4, 4-5), and that the stress path remains either on the failure surface on unloading or
much closer to it than in untaxial strain (Figure 4-6). However, according to Figures 4-11 and
4-12, which show histories of calculated crown/invert and springline closures, all participants

5 ..... .. CRT

RE/SPEC

4 LLNh=0

" : : ch =33 MPa

....... W A
0 3 --- :"-- ".-..... :

"Itasca

..... ... ".. .

0I

0 , ... I , I , I , I , I ,

0 20 40 60 80 100 120 140 160
Time (msec)

Figure 4-11. Crown-invert closure in problem 4.
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Figure 4-12. Springline closure in problem 4.

except RE/SPEC predict that before 35 ms have elapsed, the tunnel deformation has essentially
reached its transient maximum. At this time, only about 20 percent of the ultimate outward
displacement and hoop strain has accumulated, and the free field stress at the tunnel range has
only dropped by about 5 percent from its peak. Moreover, results from problem 3 indicate that
after the peak, the stress point is often slightly below the failure surface (Figure 4-6), not
precisely on it as the "loss-of-confinement" scenario would seem to imply. Thus, while some
aspects of the calculated results appear to conform with conventional wisdom, other details
suggest that the situation is more complex.

One crucial feature which bears on the relationship between the free field and the tunnel
deformation is the stress and strain concentration caused by the presence of the tunnel itself. For
example, if the surroundings were infinite, isotropic, and elastic and the free field stress state
static and unidirectional, then it is well known that the tangential stress at the springline of a
circular tunnel is three times the free field stress. While plasticity and joint failure place limits
on the achievable stress concentration in this problem, it is clear that the free field stress state
need not be precisely on the failure surface in order for the material near the tunnel to in a plastic
state.
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Figures 4-13 to 4-16 contain a more detailed picture of the predicted stresses around the
tunnel. They show the radial and tangential (with respect to the tunnel) stress distributions near
the tunnel at two different times, free field peak stress arrival (about 30 ms) and end of positive
phase (about 120 ins). Four of the calculators (CRT, RE/SPEC, and Itasca) provided results in
this form. The curves labelled "elastic" in the first two figures will be discussed later.

First consider the radial stresses (with respect to tunnel centerline) at peak stress arrival
(Figure 4-13). According to the results of problem 3 the free field vertical stress at the tunnel
range is about 100 MPa and the horizontal stress about 30 MPa. At this time the free field
stresses will decrease with either increasing or decreasing range from the source point, by about
40 or 5 percent respectively over the 12.5 m (2.5 diameters) plotted. While the calculated radial
stresses 12.5 in above the tunnel do exceed those an equal distance below (as expected), neither
level is as high as the corresponding free field value. This indicates that the relief provided by
the tunnel wall has an effect at least this far out in the vertical direction. Along a horizontal
radial, however, the calculated radial stresses approach the free field horizontal stress of 30 MPa
much more quickly.

Note in Figure 4-13 that radial stresses along all radials approach about 8 MPa at the
tunnel wall. This is the pressure exerted by the yielding perfectly plastic liner in the "breathing"
mode.

Figure 4-14 clearly shows the concentration of tangential stress along the horizontal radial.
Peak reported values range between 120 and 160 MPa, compared to the free field stress in the
same direction of about 100 MPa. However, these peaks are not as high as an isotropic elastic
analysis would predict. The reason, as noted above, is that the plasticity limits the level of
achievable stress concentration, particularly in the presence of the relief afforded by the tunnel
wall.

The "sawtooth" variation of horizontal stress along the vertical radials in Figure 4-14 is
due to target point locations alternating between intact rock and joints. There is no requirement
that horizontal stresses in horizontal joints be continuous with those in adjoining intact rock. It
is comforting to note that most calculations approximately agree on the shapes and magnitudes
of these curves.

Thus many features of the stress states at 30 ms can easily be explained based on
intuitive, static analysis, and more will be explained later based on an orthotropic elastic analysis.
In contrast, the picture at the end of the positive phase (Figures 4-15 and 4-16) is not nearly as
clear. The only stresses present are either dynamic or residual, and the levels are much lower
on the average. One reason for RE/SPEC's larger values compared with the others is that they
plotted results at the end of their free-field positive velocity phase, which came earlier than the
others (see Figure 4-3), while the free-field stress was still moderately compressive (see
Figure 4-2).

Figures 4-17 and 4-18 show the slip along the first four horizontal joints above the tunnel
centerline at two times, peak free-field stress arrival and end of positive phase. (All calculators
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Figure 4-14. Tangential stress field near the tunnel at peak free field stress arrival time (about
30 ms).
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predicted nearly equal and opposite slip on the corresponding joint below the centerline at the
same time." Virtually all the slips are in the sense that would shorten the springline. The
greatest amount of slip occurs along the joint tangent to the top of the tunnel (joint 2) and the
one below that (joint 3). The slip at the later time exceeds that at the earlier one by an average
factor of about four. At the earlier time, CRT appears to have some non-slipping nodes
surrounded by slipping ones, which runs contrary to intuition. Itasca and WA predict slips that
average 2 to 3 times the others, but CRT predicts a large slip on joint 3 at the end of the positive
phase at the tunnel wall. Overall there is very little consistency in these results among the
calculators, making them very difficult to interpret.

One question that could b- -,.2!Cd is "How much springline closure can be traced directly
to joint slip?" Table 4-1 addresses this question. The table simply sums the slips estimated at
the tunnel wall at the end of the positive phase for the two joints nearest the centerline (joints
3 and 4). These two joints could be said to contribute directly to springline closure since they
are the ones that intersect the upper half of the tunnel boundary. Again there is little consistency.
CRT and Itasca's joints contribute to order unity, while RE/SPEC's barely contribute at all.
However, this ranking is not representative of the average slips, where CRT and RE/SPEC are
about equal, but--contrary to intuition-RE/SPEC's predictions appear to go to zero at the tunnel
wall.

Table 4-1. Joint slip contribution to springline closure.

I CRT RE/SPEC Itasca WA J

Joint 3 slip at tunnel edge (in) 0.0904 0.0060 0.0278 0.0169

Joint 4 slip at tunnel edge (in) 0.0023 0.0004 0.0152 0.0047

Sum of joint 3 and 4 slips (in) 0.0927 0.0064 0.0430 0.0216

Half of springline closure (in) 0.138 0.325 0.165 0.145

Fraction of closure due to slip 0.67 0.02 0.26 0.15

Numerically predicted final deformed tunnel shapes are shown in Figure 4-19
(Displacements have been exaggerated by a factor of 10). According to this figure and
Figures 4-11 and 12, all calculations except LLNL's show reverse ovalling, i.e., the springline
closure is positive. Most calculations predict severe, localized deformation of the block of rock
bordering the springline. This appears to be due to a combination of three factors: (1) Highly
concentrated vertical stresses at the springline combine with (2) low lateral confinement due to
the presence of the tunnel wall (and not necessarily to wavefront divergence) to create a failed,
vertically compressed stress state. (3) Dilatancy then inhibits net compaction, exaggerating the
amount of "extrusion" of intact rock into the tunnel. Note that since the LLNL model did not
represent the rock as a deformable continuum, it could not have accurately represented the effect
of dilatancy, nor could it have correctly predicted the stress concentration near the tunnel wall.
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Figure 4-19. Deformed tunnel shapes at end of positive phase (about 120 ms).
Displacements are magnified by 10.
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4.3.3 Orthotropic Elastic Predictions of Stresses.

At a propagation speed of about 2.5 m/ms, the rising portion of the incident pulse extends
over about 25 m and the decaying portion over more than 200 in. Both of these distances are
fairly large compared with the tunnel diameter of 5 m, so there is a possibility that some aspects
of the response will be quasi-static. Moreover, as noted before, the dilatancy causes the plastic
response to be "less plastic," and in particular there is less softening on initial loading above the
yield point than there would Dtherwise be. So we might expect that during initial loading, a two-
dimensional, static, orthotropic, elastic solution could shed some light on the stress distributions
around the tunnel. To this end, in this section we will construct such a solution under the
loading conditions in force when the peak incident stress just reaches the tunnel center.

Tie derivation of the orthotropic elastic solution follows Lekhnitski (1966). He explains
the general approach to two-dimensional problems using complex potentials, and provides some
examples for infinite regions with holes, but does not specifically work out the full stress fields
for the fundamental problem of interest here, viz., an infinite region with a hole and with uniaxial
stress at infinity. So we will fill in the details needed to derive the fundamental solution, and
show how this solution can be rotated and superposed to build up one containing the effects of
vertical and horizontal free-field stress and internal pressure to represent the effect of the liner.

This first matter to be addressed is the choice of orthotropic elastic constants. In this
section only, let x, y, and z represent the horizontal, vertical, and out-of-plane directions
respectively. The elastic relation among macroscopic normal stresses and strains in implicitly
jointed material is similar to (3-18):

EY = --vo . 1 + cry - Vz

Ee, = - vol -vcY + oz

We are interested in plane strain in the z-direction, so we set rz- 0 . The resulting expressions
for normal strains, when compared with the standard forms

1 V2 1  12 1
ex E21 7 ' Ey fl E + E2 '
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I 1 1-V2 + 12=21 v(1 +v)
E 1  E 2  E wkN I-v2 + EwkN

For shear components, we write the engineering shear strain y as a sum of two parts, the
first "-r,/G due to intact rock shearing, and the second due to joint elastic shear. For the latter,
note that a square block of intact rock of any size w, bounded by joints, will suffer relative
tangential displacements s/lks across each pair of parallel sides, so the corresponding shear
strain averaged over the block is 2Vx/wks . The net shear compliance is thus

1 I 2
G12 G *'eS

The joint normal stiffness is the only original elastic constant that varies with stress. For this
analysis we will hold it constant at its value when joint closure is half of joint thickness.

Next, we must solve the characteristic equation

1~ + + 2V12  1 0 1
El EL G12 E)

which is a necessary condition for the general functional form of the complex potentials assumed
by Lekhnitski to satisfy the equation of strain compatibility expressed in terms of stresses. The
two positive roots can be written

I*(I -.4E4)1/2f/
2

12 " 2z

where, after using the above relations among elastic constants,

12 1 -v + 2G/wkN2 1 -v +2G/wks

The essence of Lekhnitski's procedure is that if 'I/(z),'1 2(z) are practically any complex
valued potential functions of a complex variable z, then the stress fields
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a, - -2Re[[)14(z,) + 4 e2(z2 )]
ay - 2Refe,/(Zl) + (2(Z2)]

I /

T~xy - 2hrm[,D•l(z1) + 7242(z2)1

will satisfy all the equations of two-dimensional static orthotropic elasticity provided

Zk - x +ikky , k - 1,2; i-(-I)1/2

The task now is to find potential functions for which the stresses satisfy the appropriate
boundary conditions. For remote uniaxial stress 3h in the horizontal (x) direction the
appropriate functions are

/ aoZ + 12 + a 2N - 1A]12
2 2 2-2 , k-1,2
2[z; + a22 Q4 Q)1(3_4 _ :k)-Akal+

where a is the radius of the opening. This completes the derivation of the fundamental solution.

The problem of interest is that of a tunnel loaded by vertical and horizontal free-field
stresses as well as internal loads due to the liner. We will approximate the latter by a uniform
internal pressure P, . The full solution for any stress component oi can be built up by
superposition as follows. Let 6#r, w) be the stress component at radius r from the center of the
tunnel and angle co from the horizontal, corresponding to a unit remote load in the horizontal
direction. Then by linearity, the solution for horizontal free field stess 3h will
be ah 6(, o) . This corresponds exactly to the fundamental solution derived above. For the
problem of interest there are two other sources of loading, vertical free field stress oYV and
internal pressure pl. Because the implicitly jointed medium is symmetric about 450 lines, the
solution for the former is 3vf 6#, a/2 -0w). For the internal pressure we superpose three more
fields: a uniform pressure p, everywhere, and the fields -pli(r,) , -pldi(rn/2 -- ) due to
horizontal and vertical free field tensions to cancel out the uniform pressure there. This
completes the solution for the stresses around a statically, biaxially loaded, internally pressurized
opening in an infinite orthotropic elastic medium.

To apply this analysis to the situation at peak stress arrival time, we set
ov - 100 MPa, oh - 33 MPa, and Pg - 8 MPa. One final adjustment is needed: because

as already noted the free field stress varies in the vertical direction, after evaluating the stresses
by superposition as described above, the result is then scaled down by an amount representing
the locally lower free field stress level. The results are plotted in Figures 4-13 and 4-14 as the
curves labelled "elastic". The agreement with numerically derived results is striking.
Disagreements arise where expected, i.e., when stresses are high and plasticity comes strongly
into play (radial stresses at --45* at intermediate radii, tangential at 0° and :900 at the tunnel
wall). But the intermediate maxima in tangential stress along the AY45 radials are mimicked, and
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decay rates beyond the maxima in all cases are well approximated. The radial stres -s above and
below the tunnel (Figure 4-13) closely agree with the numerical solutions. This confirms the
earlier statements concerning the extent of the relief provided by the tunnel wall.

In Figure 4-14 the vertical scale for tangential stress was cut off at 160 MPa for clarity,
owing to the very large stress concentrations in the elastic solution. In particular, the tangential
stress at the tunnel wall along the horizontal radial comes out at 673 MPa. This compares with
a value of 259 MPa from an isotropic elastic analysis under the same loading conditions. In the
orthotropic elastic solution the high stress concentration is very localized near the tunnel wall.
In the first meter, the tangential stress drops to 144 MPa, i.e., by a factor of 4.7. As such, the
orthotropic elastic solution would not be expected to accurately represent the stresses near the
tunnel in an explicitly jointed medium, even if the blocks and joints remained elastic. However,
the more severe concentration under homogeneous orthotropic conditions (compared with
isotropic) suggests that the global orthotropy of the jointed medium may be leading to more
severe tunnel deformations than would arise in an isotropic medium with the same vertical and
horizontal properties.

4.3.4 Remarks on the Numerical Solutions to Problem 4.

Three of the five participants (CRT, WA, Itasca) obtained numerical solutions
which-where comparisons were possible-agree with each other in most practical respects. All
of these solutions appear credible, based on the significant body of evidence available, i.e.,

"* Use of rational continuum models to represent the rock,

"* Use of physically based models for the joints,

"* Compatibility of results with basic understanding of wave propagation processes,

"* Absence of obvious numerical artifacts such as spurious reflections,

Comparison of stresses and strains with complete and partial analytic solutions in
all the benchmark problems.

RE/SPEC's numerical solution to problem 4 differs significantly from the first three, for
example in springline closure (Figure 4-12), radial stresses above and below the tunnel at peak
stress arrival (Figure 4-13), and radial and tangential stresses along the other radials at the end
of the positive phase (Figures 4-15 and 4-16). In the case of the stresses at the peak stress arrival
time, RE/SPEC's solution also differs from the orthotropic elastic solution, while the latter agrees
well with CRT and Itasca's numerical results and does so for reasons that we believe we
understand. The large springline closure could be related to a spurious, compressive reflection
from the lower boundary of the computational grid. There is no obvious explanation for the
significant residual stresses around the tunnel at the end of the positive phase (Figures 4-15 and
4-1f:). There do appear to be explanations for most of the other identified shortcomings and
breakdowns in RE/SPEC's numerical solutions to the earlier problems, and with further effort the
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results could probably be corrected. However, the totality of evidence developed during this
study suggests that this solution to problem 4 is not as accurate as the aforementioned three.

LLNL's approach omits a great deal of pertinent physics, most glaringly the behavior of
the rock as a deformable continuum. A glance at Figure 4-19 shows convincingly that when the
blocks as specified in problem 4 are permitted to deform, they will do so, and their deformations
will contribute substantially to the conventional indices of tunnel distress, viz., tunnel closure.
Moreover, particularly with respect to springline closure, the coupling between vertical and
horizontal stresses and deformations plays a crucial role. There is no mechanism in the LLNL
model for directly representing this coupling. LLNL attempted to approximate the effect by
imposing a constant 33 MPa horizontal stress. The result is seen in Figure 4-12: even with the
imposed horizontal stress, the springling closure is still negative (i.e., the springline elongates),
in contrast with the expected result in the face of dilatant rock response. More generally, the
pattern of deformations depends crucially on the distribution of stresses near the tunnel, and the
LLNL approach cannot accurately estimate these stresses. It is for these reasons that the
approach seems ill-suited for the problems at hand. This is not to say that there aren't certain
problems for which it may be applicable. But to be useful it would have to be accompanied by
guidelines for its applicability.
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SECTION 5

CONCLUSIONS

The primary objective of the benchmark calculation study was to understand the effect
of computational approach on predictions of tunnel deformations. We can only claim success
in meeting that objective by adopting a rather broad view of what comprises a computational
approach. That is, we must include more than purely numerical issues. In most cases where we
have identified problems or differences and where there is an apparent cause, that cause lies in
the way the medium was idealized. For example,

(1) The LLNL approach oversimplified the continuum physics of the rock by lumping
it in the joints, and this probably led to their substantially different results from
all the others.

(2) In some early solutions by WA the normal stiffness of the joints was based on the
properties of the intact rock and therefore unrepresentative of the specified joint
stiffness. The code was modified so that a constant stiffness approximating the
actual normal joint stiffness could be specified. The joints still did not have the
specified nonlinear behavior, but they did have a constant stiffness much closer
to the average over the expected range of joint closures. With this modification,
the reason for the stiffness deviation was understood, and was due to a conscious
choice in an area that could now be regarded as material idealization.

(3) Itasca and WA both chose to use an isotropic model for the implicitly jointed
region. A possible result of this is the discrepancy in horizontal stresses across
the implicit/explicit boundary noted in Figure 4-9.

There are also a few examples of issues more clearly and classically numerical in nature:

(4) The WA sliding interface model was causing a great deal of numerical chatter in
problem 2, the first one in this study where it was used. After changing certain
features of the model other than the stiffness (see Section E4), the problem was
resolved.

(5) RE/SPEC had a problem with the nonreflecting boundary in problem 3, and
recognized that it was caused by the wave speeds used in the boundary condition.
They did not elect to remedy the problem during the course of this study. The
spurious bottom reflection probably caused higher stresses at the end of the free
field positive phase (compared with other participants), and this in turn may have
led to significantly larger spfingline closures.

It is important to recognize that there is no definitive proof of the cause-and-effect
relationships suggested above. They rely more on physical reasoning and induction than
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deduction. In fact, as indicated for example in the discussion on divergent flow, glib physical
arguments may either fail or reveal themselves as oversimplifications when placed under closer
scrutiny.

In particular, statement (3) above, while apparently logical, could be questioned. As
suggested in Section 4.2.3, by judicious choice of material parameters, an isotropic elastic model
could be made to give the same coupling between vertical and horizontal stresses and strains as
an orthotropic one. The material parameters quoted in Appendix E for WA's implicit model
correspond to a smaller Poisson's ratio than for intact rock, as do the anisotropic elastic
relationships of Section 4.3.3, when used with the unstrained stiffness of the joints. But as the
joints compress and stiffen, Poisson's ratio increases. The situation is obviously more complex
than first meets the eye.

As to the overall success of the calculations themselves, the remarks in Section 4.3.4
summarize the author's evaluation. But even the organizations which appeared to successfully
negotiate problem 4 did not do so without breakdowns and detours along the way. If the tunnel
deformation calculations had not been preceded by a sequence of progressively more challenging
problems, the results would have been much more scattered. Often a calculator is faced with a
more complex problem than any of those treated here, and fewer resources to devote to it. Some
of the lessons are obvious: the calculator should take care to include all the correct physics he
can, while the customer should support as much preliminary work as possible, and barring that,
maintain a healthy sense of skepticism about the outcome of any isolated, complex, numerical
simulation.
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APPENDIX A

DESCRIPTION OF THE PRONTO2D COMPUTER CODE USED IN THE
UNDERGROUND TECHNOLOGY PROGRAM BENCHMARK ACTIVITY

John Osnes (RE/SPEC), Ben H. Thacker (SwRI),
and David S. Riha (SwRI)

Al. INTRODUCTION.

PRONTO2D is a two-dimensional transient solid dynamics code for analyzing large
deformations of highly nonlinear materials subjected to extremely high strain rates (Taylor, L. M.
and Flanagan, D. P., 1987). It is the latest in a series of transient dynamics finite element codes
that has been developed at Sandia National Laboratories, beginning with HONDO (Key, S. W.,
et al., 1978). As such, PRONTO2D contains a number of state-of-the-art numerical algorithms,
including an adaptive timestep control algorithm, a robust hourglass control algorithm, a very
accurate incremental rotation algorithm, and a robust surface contact algorithm. Four-noded,
uniform-strain, quadrilateral elements with single-point integration are used in the finite element
formulation. Beyond its general capabilities, PRONTO2D was chosen for the benchmark
calculations because new constitutive models are readily added and because a three-dimensional
derivative of the program is available (PRONTO3D) if needed by the UTP in the future.

The two features that make the UTP benchmark calculations relatively unique among
large-deformation solid dynamics problems are:

(1) A jointed rock mass subject to loading conditions that could result in large relative
motions (sliding) between adjacent rock blocks, and

(2) Loading conditions that could result in substantial tensile failure, plastic
deformation, and dilation within the rock blocks.

The joints also affect the elastic behavior of the rock mass by reducing its elastic moduli from
the intact rock values. Further, the elastic moduli of jointed rock generally are nonlinear
functions of the joint apertures.

The surface contact algorithm in PRONTO2D is directly applicable to modeling the slip
between adjacent rock blocks. It is designed to simulate smooth, cohesionless surfaces with shear
strengths defined in terms of static and dynamic coefficients of friction. In the benchmark
problems, the static coefficient of friction is the tangent of the joint friction angle. The friction
coefficient does not decay during sliding, so the dynamic coefficient of friction is equal to the
static coefficient.

The surface contact algorithm does not provide a means to model the elastic behavior of
the joints. Consequently, the approach used in the benchmark problems is to superpose the
nonlinear stress-displacement response of the joints and the linear stress-strain response of the
intact rock. The result is a composite material whose elastic behavior is equivalent to a jointed
rock mass. This approach has been developed and used successfully by other modelers
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(Labreche, D. A. and Petney, S. V., 1987), and it is referred to as the Complaint Joint Model
(CJM). Note that the elastic behavior of jointed rock masses as simulated by the CJM is
inherently anisotropic because the stress-strain response normal to a joint set is substantially
different from the response tangential to the joint set.

Nine constitutive models are available in PRONTO2D. They include an elastic-plastic
model with a Mises yield criterion that is directly applicable to modeling the tunnel liner. The
models also include an elastic-platic model with a two-invariant yield surface. However, the
flow rule in that model is nonassociative and cannot be reduced to an associative form.
Consequently, to perform the benchmark calculations, a new constitutive model (Drucker-Prager)
was implemented in PRONTO2D for modeling the plastic deformation within the rock blocks.
The new model also simulates the limited tensile strength of the intact rock. The CJM is
incorporated within the model to simulate the elastic response of the intact rock, including joint
sets.

In summary, the approach to modeling the jointed rock mass uses:

(1) The surface contact algorithm in PRONTO2D to explicitly model slip between
rock blocks along joints.

(2) A new constitutive model that:

(a) Models the elastic behavior of the rock and joint sets as an equivalent
composite material using the Compliant Joint Model to calculate the
nonlinear, anisotropic stress-strain response of the rock mass.

(b) Simulates yield of the intact rock using an incremental plasticity method
with a Drucker-Prager yield function and the associated plastic potential
function.

(c) Simulates tensile failure using a limited-tension algorithm to reduce
principal stress components that exceed the tensile strength to the tensile
strength while maintaining the original principal stress directions.

A2. NUMERICAL FORMULATION.

A2.1 Explicit Time Integration.

The equations of motion are integrated using a modified central difference scheme in
PRONTO2D. The velocities are integrated with a forward difference and the displacements are
integrated with a backward difference. This scheme is expressed as
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where ftE"Y is the external nodal force, ft/W is the internal nodal force, m is the nodal point
lumped mass, and At is the time increment. This central differesafc operator is conditionally
stable and the Courant stability limit is given by the highest eigenvalue wm0 x of the system
(Bathe, K. I. and Wilson, E. L, 1976).
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Flanagan and Belytschko (1984) provided eigenvalue estimates for the uniform strain

quadrilateral used in PRONTO2D.

Numerical damping is introduced in the solution by adding artificial viscosity. This
prevents high velocity gradients from collapsing an element before is has a chance to respond
and to quiet truncation frequency ringing. The technique used in PRONTO2D is to add viscosity
to the "bulk" response. This generates a viscous pressure in terms of the volume strain rate.

A2.2 Four Node Uniform Strain Element.

PRONTO2D uses a four-noded two-dimensional uniform strain element in the finite
element formulation. A one point integration of the element under-integrates the element but
provides a large computational advantage over a two-by-two integration rule. However, this
results in a rank deficiency for the element that may cause spurious zero energy (hourglass)
modes.

The mean stress-strain formulation for the uniform strain element considers only a fully
linear field. Any remaining nodal velocity field is the hourglass field. Possibly severe
unrestricted mesh distortion can occur if these modes are excited. The method used in
PRONT02D isolates the hourglass modes so they may be treated independently of the rigid body
and uniform strain modes (Flanagan, D. P. and Belytschko, T., 1981).

A2.3 Material Behavior.

Several classical yield surfaces that are defined in terms of the first stress invariant and
the second deviatoric stress invariant have been used to model plasticity in rock. They include
the linear Mohr-Coulomb and the Drucker-Prager yield criteria. These criteria have been
reviewed by Callahan and Fossum (1982). The Drucker-Prager yield function was used for
modeling the plasticity in the benchmark problems. This yield function is defined as
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where c.ij are the components of the stress tensor, ca and k are material constants, 1 is the first
invariant of the stress tensor, and J2 is the second invariant of the deviatoric stress tensor. The
yield surface is the locus of stress states at which !he value of the yield function is zero (" = 0).
Consequently, the Drucker-Prager yield surface is a cone in principal stress space with the axis
of the cone along the hydrostat. The specification of perfect plasticity in the benchmark
problems means that the Drucker-Prager yield surface does not change as a result of plastic
deformation (i.e., the values of a and k do not change).

The Drucker-Prager and the Mohr-Coulomb yield criteria are equivalent only at certain
stress states, depending on how the Drucker-Prager material constants are evaluated. To match
the Mohr-Coulomb criterion in triaxial compression, the material constants must be evaluated as
follows:

a 2sin
F 2 -sin)

k -( - sinE CO

where ý and co are the Mohr-Coulomb friction angle and cohesion, respectively. The resultant
Drucker-Prager yield surface circumscribes the Mohr-Coulomb yield surface.

The stress state is elastic when the yield function is negative (f < 0). When the stress
stste is on the yield surface (f = 0) and the loading condition is such that it would result in f 0,
the resulting deformation is plastic. The components of the resultant plastic strain tensor are
defined in terms of the flow rule, which is classically stated as proportional to th, gradient of a
plastic potential function g(oft). The proportionality constant is determined by the consistency
condition which requires that the stress state remain on the yield surface during plastic
Jeformation. When the plastic potential function and the yield function coincide for all stress
'tates (g = .), the flow nule is said to be associated with the yield function, as required in the
oenchmark problems.

An incremental method using tangent stiffness (Chen, W. F. and Han, D. J., 1988) is used
to implement Drucker-Prager plasticity in the cor ;titutive model that was added to PRONTO2D
for the benchmark problems. The incremeqtal stress-strain relationship can be expressed in the
following general form: ag Of

£1jmn 00 00 Cpq tkl

.'" - rstu

Ors 0 ttlf
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where doii and dek, are the components of the incremental stress and strain tensors, respectively,
Cijkl are ihe components of the elastic coefficient tensor, and repeated subscripts indicate
summation. The coefficient tensor in the brackets represents the elastic-plastic tensor of tangent
moduli for an elastic-perfectly plastic material. The quantities in the brackets, including Cijkl for
a nonlinear elastic material such as in the CJ'M, are evaluated at the current stress state.

For the Drucker-Prager yield surface, the partial derivatives of the yield function with
respect to the stress components are

af sij _ -abU
0 Gi 2 J2

where srU are the components of the deviatoric stress tensor (sr, = or -6biI/3) and bij is the
Kronecker delta function. In the constitutive model added to PRONTO2D the following extended
form of the plastic potential function associated with the Drucker-Prager yield function is used:

S- F - PI -k

where

1 2sinV
F3"(3 - sin V)

and V is the dilation angle. The plastic potential function results in an associated flow rule when
the dilation angle equals the friction angle (so that B = a and g = I. The components of the
flow rule (the partial derivatives of g with respect to oij) are

g . siU _ P &
a Oij 2 J•

F) 2

A2.4 Limited-tension Algorithm.

A limited-tension algorithm developed by Callahan (Callahan, G. D. and Fossum, A. F.,
1982) and implemented in SPECTROM-32 (Callahan, G. D., et al., 1989) is used in the
constitutive model to simulate tensile failure. In this algorithm the tensile strength at each
integration point Tx is set initially to the intact tensile strength T.. At each integration point at
each time step, the principal stresses (a, ;. ojj - ao,,m) and their unit direction vectors
( Ai, fiA1, Ail ) are calculated based on the trial stress state I at that location and time. Each
principal stress component that exceeds the tensile strength at tbe integration point T. is set to
the residual tensile strength T, . In addition, the tensile strength at the integration point is set to
T. if Tx is exceeded. (Recall that tension is negative according to the sign convention, so
exceeding Tx implies that the stress is less than -Tx and the stress is set to -Tv .) The resultant
stress state is calculated by transforming the principal stress components back to the global
coordinate system while maintaining the original principal stress directions. This transfrmation
is accomplished according to the following equation:
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where n1i is the ih component L. unit direction vector Ai.

In the limited-tension algorithm, the stress state is modified in a very direct way when
the tensile strength is exceeded. The deformation field also is affected because modifying the
stress state produces an imbalance between the external forces and the internal forces (the integral
of the stress divergence). In turn, this imbalance results in accelerations and ultimately
deformation in response to the tensile failure. Changing the tensile strength to a residual value
after tensile failure allows the formation of tension cracks to be simulated by a reduction in
strength. However, this approach to simulation of tensile cracking is very crude because it does
not account for crack orientation and the resultant anisotropy in the tensile strength. It is
justifiable wben the principal stress directions are fairly constant throughoit a simulation, so that
the tensile direction and the resultant orientation of tension cracks are fairly constant. In general,
this condition could not be ensured in the benchmark calculations. Consequently, the tensile
strength is maintained at the intact value even after tensile failure (i.e., Tr = TO).

A2.5 Implicit Rock Joint Modeling.

The compliant joint model (CJM) is a three-dimensional elastic model used to represent
the mechanical response of a rock matrix with joints (Labreche, D. A. and Petney, S. V., 1997).
The model implemented in PRONTO2D is a two-dimensional version of the CJM. The CJM
assumes that the deformation of a jointed rock mass is caused by the combination of the elastic
response of the rock matrix and the elastic response of the joints. The unfractured rock matrix
is modeled as an isotropic linear elastic solid and the Joints as a nonlinear elastic layer. The
model consists of up to four joint sets with various spacing and orientation. The response of the
CJM is effectively anisotropic due to the presence of the joint sets.

The displacement behavior normal to the joint plane varies nonlinearly with stress and the
response is governed by the physical characteristics such as joint aperture, roughness and contact
between joint surfaces, strength of the wall rock, and presence or absence of filhing. The
response is also governed by the recent movement history of the rock joint. The aperture change
of a well-mated joint without filling can be represented by a hyperbolic relationship between the
stress normal to joint plane and the joint closure (Bandis, S. C., et al., 1983 and Goodman, R. E.,
1976). The form used in the CJM is given by the equation

MIOn n a"
where,

an - normal stress acting on the joint (compression positive)

a - half-closure stress (stress to reduce the aperture to 6/2

v - joint normal displacement (closure positive, zero when On = 0)

8 - maximum joint closure

m - exponent
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The stiffness normal to the joint, kn, is defined by

k,, n - IC m vnM - 1
k - ai

O vn (8 - Vn )m

which is the slope of the nonlinear joint closure. For the Benchmark problems, a = 125 MPa and
m = 1. This hyperbolic function is used in the numerical formulation for the normal
stress-displacement response when the normal stress is compressive. A constant value of 10 -4
times the dilatational modulus, ), + 2t, of the matrix is used for joint normal stiffness when the
normal stress is tensile. This stiffness defines a linear, normal stress-normal displacement
relationship for tsie joint in tensior. This small but nonzero stiffness avoids numerical
singularities in the computations. The transmission of small tensile stresses by elements having
moduli four orders of magnitude lower than the matrix are accepted as insignificant relative to
typical compressive stresses.

The compressive normal stress-displacement relation is nonlinear and elastic. Thus, there
is no path dependence and all joint closure is fully recoverable in this model.

The shear response of joints generally consists of a nearly linear rise to peak shear
strength, followed by softening behavior with continuing shear. However, it is acknowledged that
joint size dependence may alter this. The peak shear strength response of joints is supported by
studies such as Goodman (1976) and Bandis (Bandis, S. C., et al., 1983). The shear stress of
joints is known to be inelastic when the stress state approaches the peak shear strength. T'he
CJM only models the elastic joint shear response. The shear stiffness, which is independent of
the normal stiffness across the joint, relates the shear displacement to shear stress.

"c - ks vt

where,
T - shear strength

k, -joint shear stiffness

v - joint displacement tangent to plane of joint

The shear stiffness is defined by

aVt

The CJM introduces anisotropy by reducing the composite modulus of the modeled rock
mass in the direction normal to the joint in an otherwise linear elastic material. Computation of
effective moduli is used to implement the softening effects of the joints. Stress equilibrium is
the underlying assumption in the combined response of the rock matrix and the joint sets. The
normal stress across the joint is equal to the stress in the rock matrix normal to the joint plane.
The shear stress on the joint is equal to the shear stress in the rock matrix parallel to the joint
plane.
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Correspondingly, the strains in the rock matrix are combined with the strains in the joints
additively. That is, the effective compliance for the rock mass is the sum of the compliances of
the unfractured rock and the joint sets. The effective Young's modulus, E , normal to a joint
and the effective shear modulus, 6 , parallel to a joint, are

1 1 1

SE k s

1 1 1

U G ksS

where E and G are the elastic moduli of the rock matrix, kn and k. are the normal and shear
stiffness of the joint set, and s is the spacing of the joints in the joint set.

The description of the compliant joint model is for an elastic material that models the
elastic response of a jointed rock mass. However, the implementation of the limited tensile
algorithm and Drucker-Prager plasticity allows a more realistic representation of the rock matrix.

A2.6 Explicit Rock Joint Modeling.

PRONTO2D treats contact as a kinematic constraint. That is, the algorithm modifies the
accelerations of the nodes along the contact region such that the kinematic constraints are
satisfied. The algorithm uses a partitioned approach to enforce compliance between two contact
surfaces by allowing each surface to act as a master surface for a fraction of each time step and
a slave for the remainder.

There are four steps involved in the contact algorithm. First, the contact surface geometry
is recalculated at each time step and the predicted configuration is computed by integrating the
motion without regard to the kinematic constraints required by the contact surfaces. The
following quantities are calculated for each node:

Sv + Ata

S- x + ANO

where f is the residual force vector (sum of external forces minus the sum of internal forces), m
is the nodal mass, v, is the current velocity, and At is the time increment. The predicted
kinematic quantities are denoted by the hat.

The second step is surface tracking, or the process of matching nodes along one surface
with the mating surface. The algorithm used is to locate the spatially nearest master node to the
possible point of contact. This procedure can be the most time consuming portion of the analysis
for this type of problem. To streamline the tracking algorithm, the nearest master node to a
given slave node at one time step is assumed to be in the vicinity of the nearest master node at
the next time step. Therefore, at each time step, the nearest master node is the starting point for
the search along the surface.
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The next step is to determine contact or penetration. The slave node is oriented with
respect to the master segments connected to the tracked master node. The depth and position
coordinates are calculated for both master segments connected to the nearest master node. From
these quantities, if the depth is positive, the slave node is penetrating the segment and if the
position is positive then the slave node is along the segment. When the master surface forms an
outside comer, there may be penetration of both segments. In this case, the algorithm determines
with which master segment the slave surface is more strongly in contact. One limitation of the
algorithm is that it can not detect a contact surface contacting itself.

The final step in the contact algorithm is to calculate the penetration forces imposed on
the master surface by the slave surface to restore kinematic compliance. These forces are
calculated as a fraction of the forces that would be imposed by the slave nodes if the master
surface was rigid. This fraction is based on the fraction of each time step for which the surfaces
act as master Wnd slave. The roles are reversed for the remaining fraction of the time step. The
accelerations are calculated to predict the response of the master surface to these penetration
forces such that the response of each contacting slave node is constrained by its master nodes.
The principle of virtual work is employed to define the accelerations of the master nodes in
response to the penetration forces. When friction is present, the relative tangential motion of the
contacting slave nodes is resisted. The magnitude of the tangential force exerted on the master
surface on a slave node cannot exceed the friction force. Thus friction adds a tangential
acceleration to the nodes in contact

A2.7 Transmitting Boundary Conditions.

A transmitting boundary is used to simulate a semi-infinite domain outside the boundary,
where the wave speeds of the material on both sides of the boundary are the same. The region
exterior to the boundary is replaced with an energy-absorbing boundary condition that behaves
as if the energy is transmitted across the boundary. Thus, no energy is reflected back into the
interior region.

The nonreflecting boundary is implemented in PRONTO2D according to a technique
proposed by Lysmer (Lysmer, J. and Kuhlemeyer, R. L., 1969). The basic idea is to apply
tractions at the boundary that will exactly cancel the stresses that would be reflected from a free
surface. Hence, the numerical technique involves calculating and applying the following tractions
to the surface of the nonreflecting boundary

oF - -P V a

where on and Ts are 'the normal and shear tractions; p, V , and Vs are the current density,
compressional wave speed, and shear wave speed of tle material along the boundary;
and tin and a, are the normal and tangential components of the current velocity at the
boundary. At each time step, PRONTO2D updates the tractions at the boundary using the current
density and effective dilatational and shear moduli in each element along the boundary.

In calculating the current wave speeds, PRONTO2D assumes that the wave speeds are
isotropic and independent of the orientation of the boundary. Obviously, the joint sets in a rock
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4 mass yield an anisotropic medium in which the wave speeds depend on the incident direction.
However, the anisotropy inherent in the CJM is not accounted for in the wave speed calculation
in PRONTO2D. Consequently, the wave speeds used to calculate the tractions along the
nonreflecting boundary are somewhat in error, the magnitude of which depends on the orientation
of the boundary with respect to the principal directions of the anisotropy. This error results in
a partial reflection of the incident stress.
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APPENDIX B

THEORETICAL ASPECTS OF THE LLNL DIBS
DISCRETE ELEMENT CODE USED IN THE DNA/UTP

BENCHMARK EXERCISE

Francois Heuze

B1. INTRODUCTION.

Calculations for this study were performed with the LLNL Discrete Interacting Block
System (DIBS) numerical model (Walton, 0. R., 1982 and Walton, 0. R., 1980) using a r-w
"rounded comer" version of that model. DIBS was started from the algorithms of earlier
"Uistiact-riement" models (Cundall, P. A., 1974), and evolved at LLNL. It calculates the motion
of each discrete polygonal block as it responds to contact forces, boundary and applied loads, and
gravity. Arbitrary (convex) polygonal shapes are allowed for each particle or block. Several
simplifying assumptions make the calculations tractable. All deformations take place at the
contacts, which include the compliance of the rock blocks as well as that of the rock joints;
meanwbile the blocks are kept rigid during the calculations. Note that all rock joints in DIBS
are explicit; there is no implicit jointing. All starting contacts between polygons are assumed to
be corner-on-side (i.e., temporary, sliding joint-elements or contacts are set-up at polygonal
vertices, as needed). Small but finite "overlaps" occur as normal forces are developed. Similarly
a finite, partially recoverable shear-strain develops in the contact before frictional sliding is
initiated. In the rounded-corner version of the model, corner-comer contacts are also allowed,
and they serve to allow a smooth transition in the direction of the contact normal, as a contact
moves from one side onto the next.

DIBS has been applied to several analyses of the effects of nuclear and chemical
explosions in jointed rocks (Heuze, F. E., et al., 1990).

B2. CONTACTS.

Information on contact detection and on corner-side contacts is available in (Walton,
0. R., et al., 1991). The rounded-comer contact capability was developed for this study.

, ,- rounded-corner version builds on the DIBS construct. From a user's point of view
the model functions almost the same as the sharp-comer version. Internally, however, there are
some significant differences. Input geometric data for each block contain the coordinates of an
"outer" polygon with sham comers; this is just the polygon the original DIBS model would use.
When the problem is initialized (i.e., as geometric data are stored) a circle of fixed radius, re,,
is placed inside each vertex, tangent to the two adjacent sides. A new "inner' polygon is
constructed connecting the centers of each of the comer circles. The side lengths of the inner
polygon are exactly the same as the lengths of the Erne segments between tangent points on the
outer polygon (Fig. B-i). The coordinates of the vertices of the inner polygon replace the
original outer polygon coordinates in the computer storage arrays, and this inner polygon is used
on all contact searching algorithms. Such a construct facilitates the use of most of the same
searching algorithms for contact detection as were used in the original sharp-comer version of
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the model. One major modification is that "overlap" is considered to occur when the two inner
polygons are a distance apart equal to the sum of their respective corner radii. When a comer
is contacting a side, the transformed local coordinates, x, and y,, are still determined by
(Fig. B-2):

Xt - (XX -xa) Cos + (Yc-ya) sin

Yt - (Yc -Ya) Cos 0 - (xc-xa) sin 0

The overlap, a, is now defined to be

a - r+rj-y,

where r. and r- are the radii of the comers for blocks I and J, respectively (Fig. B-2). This, in
effect, moves the real surface (for determination of contact forces) a distance rc, outside the
stored inner polygon. The other major difference for the rounded-corner model occurs when a
contacting comer goes beyond either end of the "sidee" of the inner polygon, (i.e., x,<O, or
x,> lAB I). When this occurs, the contact is redefined to be a comer-corner contact.

The existing contact forces, including the currently partially recoverable tangential shear
strain, are unaffected by the transition from one contact type to another. Only the indices in the
linked list of contact, indicating which comer and/or side of which blocks comprise the contact,
are affected. This contact information is in a separate, dynamic, linked list for each block. Each
block's list contains the indices of the sides and/or corners of blocks contacted by that block.

B3. CONTACT FORCES.

The tangential friction force model also was described by Walton et al (1991). Because
of the unique character of the nonlinear normal contact model, it is explained in more detail here.

The combined effects of an initially soft, inelastic joint and the approximate deformation
of a stiff elastic L , k- are modeled in DIBS with a loading curve that has a monotonically
increasing slope. "I he stiffness• asymptotically approaches a value equivalent to the elastic
response of intact rock at high loads. The total deformation of both the block and the joint is
assigned to the interface alone, in the model. Thus, the apparent overlap between two blocks in
the model includes the displacement associated with the actual deformat-on of the block. If d
is the distance between the centroids of two contacting blocks, and Er is the modulus of the
blocks, an equivalent spring stiffness, Kr can be defined between the centroids, K, - Eirt/di
where h is the block height and i is the joint thickness (see Fig. B-3a). The model combines this
"M rock stiffness" with a contact relation for joints that has a vertical asymptote at a maximum joint
closure, (x" A commonly used form for such joint behavior (Goodman, R. E., 1976 and Bandis,
S. C., et a!., 1983) requires just two input parameters: the maximum joint closure, cr, and the
normal joint stiffness, K,. The force displacement assumed for the joint
is F - (K aa.) / (ac - a.) , where a; is the displacement (i.e. closure) of the joint. The rockI C J C "

is assumed to be linear-elastic with a force displacement relation F - Krctr , wbhre c•r is the
displacement associated with me rock deformation. Rearranging these expressions we obtair,
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Figure B-2. Schematic of Comer-on-Side Contact in DIBS.

B-3



Fac a F

C F+Klac r Kr

for the displacements of the joint and rock, respectively. The total displacement, , is simply
the sum of these two terms,

Fac Fa m aj + ar +Klac (B-i

Equation (B-1) may be solved for F in terms of a,

F - l[aKr,-a(K +r)] + K f... +K{[(lK +K)a-aK] 2 +4KKra

The slope of this force displacement curve, dF/da , approaches Kr as a approaches infinity,

2
dF Kr aKr2 - ac Kr (Kr-rK)
da 2 2[a2K2 E2aacKr(K,_K1)+(Kr+K)2 a2 ]

Figure B-3a is a schematic representation of the rock-joint model and Fig. B-3b shows
the qualitative behavior of the component and combined force-displacement curves. Various
assumptions are possible for unloading and reloading with this nonlinear rock-joint model: (a)
the unload and reload slopes are equal to Kr., (b) the unload and reload slopes are equal to the
tangent of the loading curve at the point of initial unloading, and (c) unload and reload slopes
are set to a fixed (input) multiplier of the tangent slope at initial unloading. The selection of the
unloading model determines the degree of energy loss during collisions.

B4. OTHER THEORETICAL ASPECTS.

B4.1 Viscous Damping Algorithm.

Without any viscous damping, the hysteretic contact model produced some numerical
noise in wave propagation calculations. After tests of various damping options, we adopted
linear, velocity-proportional damping, the effect of which was shown to be amplitude
independent.

F - Ka-DV

The damping coefficient D is a user input, and it is suggested to be approximately two to five
percent of critical damping

D - .04(KM) (B-2)

where K is the spring stiffness between blocks and M, the average block mass. Figure B-4a is
a plot of position versus velocity showing the numerical noise the code was generating when a
square pulse was applied to the end of a one-dimensional chain of blocks, without any damping.

B-4
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In contrast, Figure B-4b is an illustration of the same plot as in Figure B-4a, but with the

addition of the small amount of viscous damping indicated in Equation (B-2).

B4.2 Infinite/non-reflecting Boundaries.

To absorb the wave with no reflected pulse, we added linear damping on the boundary;
the dashpot coefficient used was one quarter of critical damping, as determined empirically

F-.5(KM) V (B-3)

where K is the spring stiffness and M is the block mass for blocks next to the boundary. Note
that the functional form of Equation (B-3) is equivalent to the pC damping used traditionally in
infinite boundaries for finite element grids (Lysmer, J. and Kuhlemeyer, R. L., 1969). Figure B-
5a is a plot of the wave reflected from the rigid left boundary of a one-dimensional chain of
blocks, when the calculation of Figure B-4b is continued without the silent boundary capability.
In contrast, Figure B-5b is the same plot but with the addition of the silent boundary capability,
and it shows essentially no wave reflection. The wave absorption has proven to be very efficient
in two dimensions, as well.

B4.3 Other Features.

Numerous other features were put in DIBS in the past years. They are fully explained
elsewhere (Heuze, F. E., et al., 1990), and are summarized as:

"* A new method for speeding up gravity settling. A factor of 8 in speed was
obtained by using a kinetic energy zeroing algorithm.

"* A boundary transformation algorithm to go from the gravity settling mode to the
infinite boundary mode.

"* A new contact search algorithm which eliminates spurious high forces where new
contacts are discovered.

"* A time-history capability and restart capability.

"* A variety of mesh generating algorithms, including a Voronoi polygon generator.

B5. TIME INTEGRATION.

At each explicit time step of the calculation, a loop through all contacts is perfurmed
once, accumulating the total force and moment on each particle for that configuration. Then, the
equations-of-motion are integrated one time step and the time advanced. Each coordinate of each
particle's position (i.e., x y, and 0) is integrated in time using a second order accurate scheme
valid with non-uniform time steps. For example, the x-coordinate of the centroid of a particle
at time step n +1 is determined explicitly from the positions at steps n and n-1 and the
x-direction force at the nth time step, F , by the expression
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.(It+ Xn - xAt' +n-1.+ I(At'At+At' 2)Xn...+O(At 3)
n 1At) At) I

where At' is the time interval from n to nr+1, At is the time interval from n -1 to n,
and fX - Fn/m where m is the mass of the block. If the time step is uniform (i.e., At' - At) ,
and there are no velocity dependent forces, this expression reduces to the familiar, time centered,
third order accurate Verlet scheme commonly used in molecular dynamics calculations (Allen,
M. P. and Tildesley, D. J., 1987). Similar expressions are used for the y- and 0-coordinate
integrations, based on the total y-direction force and the total moment acting on each block.

Because this is an explicit integration scheme, the time step must be kept below a stability
limit determined by the stiffest spring and/or the smallest mass in the system. For accuracy, the
time step must usually be kept significantly smaller than the stability limit. Empirical tests of
accuracy have determined that on the order of 50 or 100 time steps per physical oscillation cycle
are needed for the numerically integrated results to compare favorably with analytic solutions for
simple multi-block systems (i.e., ±-1%).
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APPENDIX C

DESCRIPTION OF FINITE ELEMENT METHOD USED
IN UTP BENCHMARK ACTIVITY

BY CALIFORNIA RESEARCH AND TECHNOLOGY

Yoshio Muki, Y. Marvin Ito

C1. INTRODUCTION.

Finite element methods which incorporate an interface logic are capable of simulating the
behavior of jointed rock masses subjected to quasi-static or dynamic loading environments. At
California Research and Technology Division (CRT) of The Titan Corporation, analyses of
jointed rock mass problems for the LTP Benchmark Activity were performed using
EXCALIBUR. Originally developed from NONSAP (Bathe, K. J., et al., 1974), a Lagrangian
finite element program for the solution of static and dynamic structural and continuum problems
with both geometric and material nonlinearity capabilities, EXCALIBUR has undergone extensive
development and validation over the course of many DNA sponsored programs.

The EXCALIBUR code uses an explicit (central-difference) time integration scheme
which allows efficient solution of ground shock problems where there are large response
gradients in both time and space. An advantage of the explicit algorithm is the ability to
incorporate complex constitutive models which represent detailed inelastic behavior of geologic
materials. The code also has a variety of special features to enhance numerical solution
efficiency, including element underintegration, and controls on the levels of physical models
carried by various parts of the finite element grid.

C2. REPRESENTATION OF JOINTED ROCK MASS.

For analyzing tunnel response in jointed rock masses, EXCALIBUR treats large-scale
material discontinuities with gap formation and frictional contact using an interface element. A
recent enhancement incorporates substructuring at the element level allowing the code to capture
micromechanical effects including anisotropy in the far-field jointed system without increasing
the global system of equations. These methods of modeling jointed rock masses are used in the
UTP benchmark calculations. The first approach, termed discrete joint modeling, will be
described next, followed by a description of the second approach termed composite jointed rock
modeling.

C2.1 Discrete Joint Modeling.

In the discrete joint modeling approach, both the rock mass and the rock joint are
represented by ordinary finite elements, typically four-node quadrilaterals. The mechanical
behavior of the rock joints is modeled using a modified version of the CRT Interface Element
fIto, Y. M., et al., 1981). The interface element was developed to treat the mechanical
interactions of dissimilar or disconnected bodies. The element typically carries a high aspect
ratio with a prescribed stiffness in the direction normal to the joint face.
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As specified for the Benchmark Activity, the normal stiffness of the rock joint is
prescribed to increase with closure. The element has a constant elastic shear stiffness, with shear
bearing capacity along the joint face following a non-dilatant Coulomb-type friction rule
(dependent on the normal stress). The element can be prescribed to have no stiffness in tension.
This combination of features allows the element to model interface stick, slip and separation.

The constitutive relation governing the interface element is a 2-by-2 matrix, i.e.,

{AOn}-cc1 C12] y I

where 'T and y are shear stress and strain and o, and are normal stress and strain. Under
conditions where the interface is closed and no slip is occurring, the incremental constitutive
relation is

[AT ~ ;. { AA"Eyf}

where G'and E' are the tangent stiffnesses. While under conditions where slip is occurring, the
relation is

{ A T 0 -Ži .E' A T T" +IIAO,4 0 T I ]{A} ;n
0 E

where -r. is the cohesion and Ii is the coefficient of friction. And of course, during separation
(En < 0), the stiffness is the zero.

In this method, the thickness, location (hence spacing), and orientation of the rock joint
are discretely represented in the numerical model. This is an important feature of modeling
jointed rock fields near buried structures where the nominal structural dimensions are of the same
order as the nominal joint spacing. Thus, a small time step is usually required, not only to retain
numerical stability, but to accurately track the nonlinear behavior of the joint system near the
tunnel.

C2.2 Composite Jointed Rock ElemenL

In order to effectively analyze jointed rock mass in the far-field, a composite joint/rock
mass element has been developed (Muki, Y., et al., 1992). The composite jointed rock element
is a mathematical representation of the mechanical behavior of a rock mass with a regular
distribution of joints. The element is intended to capture the mechanical behavior of a
characteristic sample of insitu material comprising a rock mass interspersed with joint zones.
Each component within the composite joint element is treated as a substructure with a full and
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separate constitutive relationship. The interaction of the joint zones and rock mass is based on
stress equilibrium and strain compatibility within the element.

The composite jointed rock element assumes a geometric orientation and distribution
between intact rock and joint materials, with the intact material taking up most of the region
occupied by the element. For the sake of this discussion, the orientation of the distribution of
joints is taken to be horizontal and vertical, although this restriction can easily be changed to
account for more arbitrary jointed rock mass configurations. The joint zone represents the effects
of all joints with similar orientation in the sample. The key parameter is the relative thickness
of (distributed) joint material as compared to intact rock. Since there are two types of joints,
horizontal and vertical, two characteristic ratios of intact rock thickness to joint material thickness
must be defined: the ratio of the width W of the intact material to the width w of the vertical
joint material is a - W/w >> 1, and the ratio of the height H of the intact material to the height
h of the horizontal joint is defined as P - H/h>>1.

The superscripts used in the development are as follows:

[ refers to intact rock material quantities,

[]V refers to vertical joint material quantities,

[]h refers to horizontal joint material quantities.

Also, the symbols AFc refer to correction strain and Ao' refer to out-of-balance stress.
Unsi'perscripted quantities refer to overall element (external) quantities which define the
composite representation of the response of the various components of the jointed rock mass.
These composite values are used during the time integration. Finally, with the exception of out-
of-balance stress terms, which are carried forward from the previous time step, all quantities are
quoted at the current time step.

The following mathematical developnment assumes plane strain behavior, with x denoting
the horizontal direction and y the vertical direction. Overall composite strain increments are
represented by AE, {AJ} - {Asx AEy AyI} and are uniform over the entire element.
Correction strain increments are represented by AEc, {fAc} - {ASc A c Ayc}. The correction
strains represent perturbations about the overall composite strains andJaffect each component
differently. These correction strain increments are used to adjust the increments in the strains
of both the intact rock and the vertical and horizontal joints to attain internal stress equilibrium.
Note that the internal strain correction increments do not affect the motions at the four corner
nodes. Together, seven strain increment modes (four internal and three external) along with the
two material distribution parameters, a and [, fully describe the incremental strain state of each
of the components.
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The governing equations for compatibility of strain increments are

Ac'x -Ac -Ac"-

AyI - Ay-1" A C-1 t"a

A E, - Ac1, -TA (C-1)

Ay' - Ay- 1 Ay' - -1 Ay4h
a

for intact rock,

Acv - AE +A~c

AeV - lAE AC, C2

Ay1 - Ay+•Ay- - _Ay .h
T

for vertical joint material, and

h1 C
AF e -Ax -a A /x

A oh _ Aoh- ,, (C-3)

Ayhh - Ay - AY + Aych
a

for horizontal joint material.

Assuming that changes in stresses produced from the strain changes in the previous time
step are not in equilibrium, an inherited out-of-balance in stress increments Ac' must be carried
forward and included in the calculation for stress equilibrium at time t. [For example,

I - I 1 I

Then, for stress equilibrium, the following equations must hold

, e +,,-cv +Ad
Ae Ah IAo

4y 4 y (C4)
Atv + A •- A-1 I

From the constitutive relationship for intact rock we have

Ax C 11 Ax + 12 A-y

A I - C I AcI + C1I A I (C-5)Gy 11 Ey 12 Fx

AT I C3 Ay'
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where the stiffness coefficients d are assumed-isotropic and related to bulk modulus K1 and shear
modulus GI by the usual relations

I 141

C 12 -K +G3

I

Similar relations hold for the vertical joint material (superscript v) and for the horizoatal joint
material (superscript h).

Combining Equations (C-1) through (C-5) gives a set of equations relating intact rock,
vertical joint and horizontal joint strain increments to nominal external and internal strain
increments, a:d corrections in the stress increments of the form:

[C] {As~}J - [D] {AEJ} -- {fLe} ((C-6)

where

..v1 11 1 1(_C20

1 1 h h + 1 C1 0 0
(C - (• 1) C

0 0 -3 3+ -8c 31 3  -( c31  -I

a

I v

0 h I h11 12-C12 "1. ll 0

o 0

C;3 - 33

o C CAI-C 3 h IC33 -3333
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When the composite element is used in conjunction with nonlinear materials, a
predictor/corrector method ito, Y. M., et al., 1981) is used to maintain solution accuracy and
efficiency. Briefly, the incremental stiffness relationship in Equation (C-6) is based on secant
moduli which are calculated at the end of each time step for use in the equilibrium equation in
the following time step. If the type of loading changes (e.g., plastic loading/unloading joint
separation closure, a set of revised secant moduli can be calculated for each of the components
undergoing the nominal external strain increment. Note that the secant moduli are for an
assumed strain increment and may not be the same as for the strain increments obtained after
solving Equation (C-6). This difference will lead to out-of-balance stress I Aoe, which is
added in the following time step.

Given the material moduli, overall strain increments and out-of-balance, Equation (C-6)
can be solved for the internal strain incremenets. For elastic conditions, Equation (C-6) is
decoupled into two 2-by-2 systems of equations which are easily solved for { A FC }. Insertion
of { A ,C} into the strain compatibility relationships (Equation2 C-3, C-2, C-3) yields the
predicted equilibrium strains for each component of the element. Stresses and other state
variables are then updated by exercising the appropriate material model for each of the
components in the new strain state. By using the pred;ctoricnnector method, the rumber of calls

to the material mczel subroutines can be minimized.

Finally, it is also po:,sible and often desirable to use the initial elastic moduli for each of
the materials in the internal equilibrium equatioais for all time, even though larger approximations
in out-of-balance stresses occur, in order to reduce the Pm•merical cost of the solution. In this
case, the out-of-balance stress is used to carry all nonlinear effects into the next time step in th,•
integration.

C3. BENCHMARK CALCULATIONS.

C3.1 Static Calculations (Benchmark Problems 1, 2 and 2-S).

Both discrete and composite joint modeling methods were used to analyze three quasi-
static Benchmark cases. As will be shown, except for some numerical cell ringing, excellent
agreement was found in all cases between the discrete and composite joint model calculations.
In all the quasi-static calculations, no damping was used in the equations of motion.

in Case 1 (Senseny, P. E., 1991), a simplified spherically divergent strain path is used to
drive both an intact rock sampie and a jointed rock sample. For the jointed rock sample, both
discrete 3nd composite joint methods were employed to obtain results for comparison. In Case
2 (Senseny, P. E., 1991), a staggered jointed rock array undergoing uniaxial strain loading is
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analyzed. (In this case, the possibility of hourglass distortion in a multi-cell grid was eliminated
by using full 2-by-2 integration for the discrete joint calculation. In all other cases, one point
integration was used.) In the composite joint calculations, material ratios (a and f5) of 200:1
were used.

Case 2-S (Simons, D. E., 1991) was designed to exercise the jointed rock mass models
under combined shear and compressive loading. In the discrete model analysis, the rock material
was represented using two constant strain triangles and the joint separating the two was modeled
using a four node quadrilateral. Although the original problem description contained rollers on
the left and lower boundaries, in the present analysis the boundary conditions were driven from
all sides to minimize nonsymmetric effects in the solution of the equations of motion. Of the
twelve independent displacement degrees of freedom present in the system, eight were controlled
by the specified displacement boundary condition, the remaining four were determined by
equations of motion.

Case 2-S was repeated using the composite joint model with very similar results. The
composite joint analysis uses only one element with eight displacement degrees of freedom. The
two internal correction strains are equivalent to the four degrees of freedom solved by the
equations of motion in the discrete joint analysis. These. two strain terms 2re solved using the
governing equilibrium equations and have vastly different dynamic characteristics than the four
degrees of freedom solved by the central difference method used in the discrete joint calculation.
The out-of-balance stresses only appear in a portion of the solution after a transition (change of
modulus, elhstic/plastic loading) and converge rapidly in typical solutions. The composite joint
solution under conditions where there are no transitions will give equilibrium exactly. Due to
the absence of numerical ringing, the composite joint model yielded very clean resuhts with
adequate time resolution, and reliably determined plasticity and joint slip in the solution.

C3.2 Dynamic Calculations (Cases 3 and 4).

Cases 3 and 4 are the field calculations (Senseny, P. E., 1991). In each c-ase both discrete
and composite joint models were used to construct a solution. In the near field the joints were
modeled discretely as specified and in the far field the composite joint element was used. All
elements were evaluated using 2-by-2 integration. To control the numerical ringing during
unload, a time dependent stiffness proportional damping was used. From time t = 0 to 25
milliseconds, no damping was used. After 25 milliseconds (nominally the TOA of the peak at
the tunnel range, damping was increased linearly in time to reach 10% of critical damping at 30
milliseconds. The damping coefficient was held at 10% critical for the remainaer of the solution
No lithostatic stresses were assumed to exist in these analyses.

The model of the steel tunnel liner in Case 4 employed a higher-order elasto-plastic
element which simulates the response in both thrust and moment. The element is an assemblage
of a membrane component to match axial stiffness and a shear/bending component to match
moment of inertia. A layer of interface elements with the same normal stiffness behavior used
to model the joints but without shear capacity was placed between the tunnel liner and the
surrounding rock mass. This allows the structure to freely slide along or separate from the
surrounding jointed rock mass during deformation.
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APPENDIX D

DESCRIPTION OF THE DISTINCT ELEMENT METHOD USED IN THE
UNDERGROUND TECHNOLOGY PROGRAM (UTP) BENCHMARK ACTIVITY

Loren Lorig

D1. INTRODUCTION.

The distinct element method is a recognized discontinuum modeling approach for
simulating the behavior of jointed media subjected to quasi-staiic or dynamic conditions. The
method has three distinguishing features which makes it well suited for discontinuum modeling:

(1) The medium is simulated as an assemblage of blocks which interact through
corner and edge contacts.

(2) Discontinuities are regarded as boundary interactions between these blocks;
discontinuity behavior is prescribed for these interactions.

(3) The method utilizes an explicit timestepping (dynamic) algorithm which allows
large displacements and rotations and general non-linear constitutive behavior for
both the matrix and discontinuities.

Since the time the method was proposed, several forms of distinct element codes have been
developed to cover a range of rock mass strepgths and confining pressures which are encountered
in situ.

UDEC (Universal Distinct Element Code) is the original mainframe computer code
developed for geomechanical analysis in which the performance of rock mass may be dominated
by discontinuities (joints, faults, bedding planes). UDEC was originally developed by Dr. Peter
Cundall through contracts with the U.S. Army Waterways Experiment Station. Since 1983, Itasca
Consulting Group, Inc. have completed a number of modifications to the code which greatly
expand its ranige of applicability.

UDEC is sold by Itasca Consulting Group, Inc. as a source code or as an executable code
for use on personal computers and some workstations. Over 150 copies of the code have been
sold world w;de. The most recent version, Version 1.7, was used as the basis for the benchmark
activity. The code was modified to include the intact rock constitutive relation (i.e., Drucker-
Prager model) specified for the ben~chmark problem. With the inclusion of this constitutive
model, a new version number was assigned, Version 1.8.

D.2 THE DISTINCT ELEMENT METHOD.

D2.1 Numerical Formulation.

In the distinct element method, a rock mass is represented as an assemblage of discrete
blocks. Joint, are v. - ed as interfaces between distinct bodies. The contact forces and
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displacements at the interfaces of a stressed assembly of blocks are found through a series of
calculations which trace the movements of blocks. Movements result from the propagation
through the block system of a disturbance applied at the boundary. This is a dynamic process
in which the speed of propagation is a function of the physical properties of the discrete system.

The dynamic behavior is described numerically by using a timestepping algorithm in
which the size of the timestep is selected such that velocities and accelerations can be assumed
constant within the timestep. The distinct element method is based on the concept that the
timestep is sufficiently small that during a single step disturbances cannot propagate from one
discrete element in the model further than its immediate neighbors. This solution scheme is
identical to that used by the explicit finite difference method for continuum numerical analysis.
The timestep restriction applies to both contacts and blocks. For deformable blocks (blocks
which are internally discretized into finite difference elements), the zone size is used to define
the timestep limitation, and the stiffness of the system includes contributions from both the intact
rock modulus and the stiffness at the contacts.

The calculations performed in the distinct element method alternate between application
of a force-displacement law at the contacts and Newton's second law of motion at the blocks.
The force-displacement law is used to find contact forces from displacements. Newton's second
law gives the motion of the blocks resulting from the forces acting on it. If the blocks are
deformable, motion is calculated at the gridpoints of the triangular finite-strain elements within
the blocks. Then, the application of the block material constitutive relations gives new stresses
within the elements.

This numerical formulation satisfies momentum and energy conservation laws by
satisfying Newton's laws of motion exactly. Although some error may be introduced in the
computer programs by the numerical integration process, this error may be made arbitrarily small
by the use of suitable timesteps and high precision coordinates.

D2.2 Rock Joint Representation.

A rock joint is represented numerically as a contact surface (composed of individual point
contacts) formed between two block edges. In general, for each pair of blocks that touch (or is
separated by a small enough gap), data elements are created to represent point contacts. In
UDEC, adjacent blocks can touch along a common edge segment or at discrete points where a
comer meets an edge or another comer. For deformable blocks, point contacts are created at all
gridpoints located on the block edge. Thus, the number of contact points can be increased as a
function of the internal zoning of the adjacent blocks.

A specific problem with contact schemes is the unrealistic response that can result when
block interaction occurs close to or at opposing block corners. Numerically, blocks may becomc
locked or hung-up. This is a result of the modelling assumption that block corners are sharp or
have infinite strength. In reality, crushing of the corners would occur as a result of a stress
concentration. Explicit modeling of this effect is impractical. However, a realistic representation
can be achieved by rounding the comers so that blocks can smoothly slide past one another when
two opposing comers interact. Comer rounding is used in UDEC by specifying a circular arc
for each block corner. The arc is defined by the distance from the true apex to the point of
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tangency with the adjoining edges. By specifying this d~stance rather than a constant radius, the
truncation of sharp comers is not severe.

In UDEC, thz point of contact between a corner and an edge is located at the intersection
between th. edge and the normal taken from the center of the radius of the circular arc at the
corner to the edge. If two corners are in contact, the point of contact is the intersection between
the line joining the two opposing centers of radii and the circular arcs. The directions of normal
and shear force acting at a contact are defined with respect to the direction of the contact normal.
Contacts along the edge of a deformable block are represented by corners with very large
rounding lengths.

Comer rounding only applies to the contact mechanics calculation in UDEC. All other
calculations and properties such as block and zone mass are based on the entire block. Corner
rounding can introduce inaccuracy in the solution if the rounding is too large. If the rounding
length is kept to approximately one percent (1%) of the representative block edge length in the
model, good accuracy is achieved.

Contact point information in UDEC is updated automatically as block motion occurs. The
algorithms to perform this updating must be computationally efficient, particularly for dynamic
analysis, in which large displacements may require deleting and adding hundreds of contacts
during the dynamic simulation. UDEC takes advantage of a network of "domains" created by
the two-dimensional block assembly. Domains are the regions of space between blocks which
are defined by the contact points. During one timestep, new contacts can be formed only
between corners and edges within the same domain, so local updates can be executed efficiently
whenever some prescribed measure of motion is reached within the domain. The main
disadvantage of this scheme is that it cannot be used for very loose systems because the domain
structure becomes ill-defined.

D2.3 Rock Joint Behavior.

Numerically, a joint is a special contact type which is classified as an edge-to-edge
contact in 2D. In UDEC, a joint is recognized when a domain is defined by two point contacts.
The joint is assumed to extend between the two contacts and be divided in half with each half-
length supporting its own contact stress. Incremental normal and shear displacements are
calculated for each point contact and associated length.

UDEC has two joint behavior relations to describe the mechanical response at the
interface. The basic joint model (Coulomb slip model) captures several of the features which are
representative of the physical response of joints. In the normal direction, the stress-displacement
relation is assumed to be linear and governed by the stiffness kn such that

'n -"kn Un

where on is the effective normal stress, and u, is the normal displacement.

There is also a limiting tensilv strength, T, for the joint. If the tensile strength is exceeded
(i.e., if a. < -7), then an = 0. Similarly, in shear the response is controlled by a constant shear
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stiffness, k,. The shear stress, T., is limited by a combination of cohesive (C) and frictional (q)

strength. This, if

SI' s C + 3n tan T.. (D -1)

then

ir, -k.u. (D-2)

or else, if

r (D0-3)

then

Ts - sign (us) Tmax (D-4)

where use is the elastic component of the shear displacement, and u. is the total shear
displacement.

For the benchmark activity, a more comprehensive joint model, called the continuously-
yielding joint model (Cundall, P. A. and Lemos, J. V., 1990) was used. The continuously-
yielding joint model, proposed by Cundall and Hart (1984) and revised by Lemos (1987), is
intended to simulate the intrinsic mechanism of progressive damage of the joint under shear.
This approach produces consistent responses in the varied conditions encountered in numerical
modeling. The model also provides continuous hysteretic damping for dynamic simulations.

The response to normal loading is expressed incrementally as

Aon - kAu,,

where kn is the normal stiffness, given by kn - a. an , a simple relation representing the
observed increase of stiffness with normal stress, where an and en are model parameters. The
user may specify maximum and minimum normal stiffnesses and, in general, zero tensile strength
is assumed.

One feature of the continuously-yielding model is the ability to simulate the intrinsic
mechanisms of progressive damage of the joint under shear. Since this feature was not required
for the benchmark activity, the shear stress-displacement relation previously described
(Equations D-1 through D-4) was used.

D2.4 Block Deformability.

In UDEC, each block is automatically discretized into triangular constant-strain elements.
These elements may follow an arbitrary, nonlinear constitutive law (e.g., Mohr-Coulomb failure
criterion with non-associated flow rule). Other nonlinear plasticity models recently added to
UDEC include a ubiquitous joint model and strain-softening models for both shear and
volumetric (collapse) yield. As mentioned in the introduction, the Drucker-Prager model was
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added specifically for use in the benchmark activity. The complexity of deformation of the
blocks depends on the number of elements into which the blocks are divided. For the benchi'ark
activity, either 4 or 16 triangular zones were used for each square block.

D2.5 Numerical Damping.

If natural energy dissipation such as inter-block sliding or internal block failure
accompanies the discontinuum analysis, unwanted vibrations due to initial or transient force
imbalance will be absorbed. However, if the analysis is predominantly elastic, some artificial
damping will be necessary. Damping is used in UDEC to solve both static and dynamic
problems. Static problems generally require more damping than dynamic ones. Two types of
damping, mass-proportional and stiffness-proportional, are available in UDEC. Mass-proportional
damping (or viscous damping) applies to centroids of rigid blocks or gridpoints of deformable
blocks a force which is proportional to the (mass) velocity but in the opposite direction.
Stiffness-proportional damping applies to contacts or stresses in zones as a force which is
proportional to the incremental force or stress and in the same sense. Either form of damping
may be used separately or in combination. The use of both forms of damping in combination
is termed Rayleigh damping (Bathe, K. J. and Wilson, E. L, 1976).

Qualitatively, the mass-proportional part tends to act on lower frequency modes which
usually are associated with the movement in unison of several blocks or gridpoints ("sloshing"),
while the stiffness-proportional component damps higher frequency inter-block vibrations
("rattling").

The mass damping force terms {d}, for translational degrees of freedom in the momentum
equation take the form

{d} - -a[M] {u}

where [M] is the mass matrix, {a} is the velocity vector, and a is the mass-proportional
damping constant.

Vibrational energy generated at contacts between blocks or within deformable zones is
damped by applying stiffness-proportional damping at the contact or zone. The damping force
is

(s} - [K] {u}

where [K] is the stiffness matrix, and 0 is the stiffness-proportional damping constant. The
stiffness damping force is omitted if sliding occurs at the contact or if failure occurs within the
zone because frictional dissipation provides natural damping.

For a multiple degree-of-freedom system, choice of the damping constants, a and 13,
cannot be made with certainty. However, the critical damping ratio, y, at any natural (angular)
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frequency of the system, wo, can be found (Bathe, K. J. and Wilson, E. L, 1976) to be

Y [a +0(01 (D-5)

The level of damping is seen to be frequency-dependent. The values of a and f3 must be chosen
to provide a suitable fraction of critical damping.

Equation (D-5) reaches a minimum at

Ymin " f min

The fundamental frequency is then defined as

Amin" - Omin

-2nr

where units are cycles/second. The values of Ymin and fmin are required input for damping in
UDEC. For static analysis, the values have often been determined either by using a simplified
analog of the model (for example, the vibration of an equivalent elastic half space) or by
monitoring a short undamped run so that dominant modes for damping can be identified. An
alternative approach used in UDEC is to employ an "adaptive" damping scheme which adjusts
the mass damping constant, a, automatically tu the changing conditions of the problem during
solution (Cundall, P. A., 1982). The adaptive damping algorithm monitors the rate of energy
change in the model during solution. The value of ct is adjusted as a function of the rate of
energy dissipation and the rate of change of kinetic energy in the model. The algorithm is
similar to a servo-mechanism in which an output system control parameter is continuously
adjusted based on the measured system response.

For dynamic analysis, the damping should attempt to reproduce the frequency-dependent
damping of natural materials at the correct levels. For geologic materials, this is generally 2%
to 5% of the critical damping. The dominant frequencies are a combination of the input wave
frequencies and the natural modes of the system. For the benchmark activity, no numerical
damping was used except to arrive at the prescribed static in-situ conditions prior to application
of the dynamic load.

D2.6 Solution Stability.

As mentioned previously, the solution scheme used for the distinct element method is only
conditionally stable. The limiting timestep is determined which satisfies both the stability
criterion for calculation of internal block deformation as well as that for the inter-block relative
displacement. The approximate timestep required for the stability of block deformation
computations is

At, -2min j
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where mi is the mass associated with block node i, and ki is the measure of stiffness of the
elements surrounding the node. The ratio of mass to stiffness is analogous to the highest
eigenfrequency, wmax, of a linear elastic system.

The stiffness term ki must account for both the stiffness of the intact rock and that of the

discontinuities. It is calculated as the sum of the two components:

ki --Ek ÷k i

The first term on the right-hand side represents the sum of the contributions of the stiffness of
all elements connected to node i, which are estimated as

2

S--- + 4 a
3 Jhmi

where K and G are the bulk and shear elastic moduli of the block material, respectively, bmax is
the largest zone edge, and hmin is the minimum height of the triangular element. The joint
stiffness term k-- exists only for nodes located on the block boundary, and is taken as the
product of the normal or shear joint stiffness (whichever is larger) and the sum of the lengths of
the two block edge segments adjacent to node i.

For calculations of inter-block relative displacement, the limiting timestep is calculated,
by analogy to a simple degree -of-freedom system, as

Atb = (frac)2 in11
[Kax

where Mmin is the mass of the smallest block in the system, and Kmax is the maximum contact
stiffness. The factorfrac is a user-supplied value which accounts for the fact that a single block
is in contact with several blocks. A typical value for frac is 0.1.

The controlling timestep for a distinct element analysis is

At = min(Atf,1Atb)

When stiffness-proportional damping is used, this timestep restriction may not guarantee stability.
Belytschko (1983) shows that the timestep in this case should be adjusted as follows:

A= 2 [J' [2_ •,

At = - ,
wmax

where %max is the highest eigenfrequency of the system, and y is the fraction of damping at this
frequency. This is accounted for in the UDEC analysis by a user-supplied factor based on the
selected damping conditions.
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APPENDIX E

THE APPLICATION OF THE FLEX PROGRAM
TO UTP BENCHMARK PROBLEMS

Felix Wong, David Vaughan

El. INTRODUCTION.

Weidlinger Associates analyzed the series of UTP Benchmark Problems using the FLEX
finite element program (Vaughan, D. K. and 'Richardson, E., 1991). The FLEX code was
developed by Weidlinger Associates to solve a wide range of structural response, structure-media
interaction and continuum wave propagation problems.

Several of the smaller benchmark problems were solved running FLEX on an IBM
RS/6000 workstation. The larger models were analyzed on a supercomputer at Los Alamos
National Laboratory.

E2. OVERVIEW OF THE FLEX CODE.

FLEX is a finite element code designed for 2-D and 3-D dynamic analysis using an
explicit time integration approach. Both geometric and material nonlinearity may be incluaed
in an analysis. Static problems may also be solved using a dynamic relaxation approach.

E2.1 Time Integration Approach.

The equilibrium equations of motion for a finite element grid can be expressed as:

[M] + [C]2 + [K] u - Q •(-1)

where u is the displacement vector for all nodes of the grid (the single and double dots indicate
single and double time derivatives, respectively. [Al], [C] and [K] are the mass, damping and
stiffness matrices and Q is a vector of applied nodal forces. FLEX solves Equation (E-1) using
the second order, central difference approach to explicitly integrate the equations of motion
forward in time. A diagonal lumped mass matrix is used and a diagonalized stiffness and/or
mass proportional damping matrix is also assumed. This approach avoids the necessity of
assembling and manipulating large global stiffness, mass and damping matrices and provides a
computationally efficient approach to the solution of large, nonlinear wave propagation problems.

The adopted approach is numerically stable for time steps which are no greater than the
Courant stability limit. This criteria can be thought of as the time required for a wave to
propagate across the minimum dimension of an element within the model. Since a model may
contain locally small or stiff elements which tend to reduce the allowable time step for an
element, an approach, termed subcycling, is used to allow different time steps in different regions
of the model. This approach minimizes the time step penalty associated with locally small or
stiff elements.
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E2.2 Element Library.

FLEX may be used to solve both 2-D and 3-D models. For 2-D plain strain or
axisymmetric models, the available elements types are: 4 node quadrilateral continuum elements,
2 node layered shell (Mindlin plate) and 2 node spring and dashpot continuum elements. For 3-D
models, the available elements types are: 8 node hexahedron continuum elements, 4 node layered
shell and 2 node spring and dashpot elements.

All elements assume linear shape functions and utilize single point quadrature integration
for all integrals over the volume of an element. Since this approach under integrates the internal
strain energy of an element, there are deformational modes, termed hourglass modes, of an
element which are unresisted. The adopted formulation for the continuum elements (Flanagan,
D. P. and Belytschko, T., 1981) includes orthogonal hourglass control to suppress these hourglass
modes.

E2.3 Constitutive Models.

A number of constitutive models are available within FLEX to allow the simulation of
a material's nonlinear constitutive behavior in a high stress environment. These models,
developed by Weidlinger Associates, include the cap family of models for soil and rock
(Dimagio, F. L and Sandier, I. S., 1971) and equivalent models for concrete (Levine, H. S.,
1982). These constitutive models use an incremental plasticity formulation with a fixed failure
surface and moveable cap. An associated flow rule is assumed. This approach provides
guarantees of uniqueness, continuity and stability for material behavior when subjected to
multi-dimensional strain paths. Both rate dependent and rate independent models are available.
Also, two- and three-invariant piasticity surfaces are available.

E2.4 Geometric Nonlinearity.

Bcth small rotation/small strain and large rotation/moderate strain options are available
within the program. The large rotation/moderate strain option uses an updated Lagrangian
approach to account for the geometric nonlinear behavior of the model.

E2.5 Joint Modeling.

FLEX provides two methods (Levine, H. S., et al., 1989) for modeling joints. These are
the continuum interface element approach and the slide line approach.

The interface element approach uses 'thin' continuum elements to represent a joint
between two blocks of material in an analysis. The interface elements are not the actual
thickness of the joint since this would :esult in severe time step penalties and aspect ratio
problems. Instead, an interface element simulates a region of continuum material with a joint
embedded within it. These elements have special joint constitutive relations in addition to the
standard constitutive properties of the continuum material on either side of the joint. Simulation
of slip and separation/recontact can be achieved using this approach. The normal and shear
stresses of interface elements are modified based upon whether contact or separation is detected
and by limiting the shear stresses tangential to the boundary using a Mohr-Coulomb failure
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surface that is fit to joint data. Because the nodal connectivity of interface elements do not
change during an analysis, this approach is inherently restricted to problems in which the amount
of sliding along an interface is much less than one element dimension.

The slide line approach used in FLEX is a penalty function approach (Halquist, J. 0., et
al., 1985). This approach allows the user to define multiple domains within the computational
model which interact with each other through the forces produced by contact (penalty) springs.
Penalty springs form between two domains whenever the nodes of one domain penetrate the
exterior boundary of another domain. This approach can be used for problems which include
significant sliding along a joint since it accounts for an adaptive connectivity which changes as
nodes slide beyond the current contact element on the boundary of a domain.

The main features of the slide line contact computation are as follows: At each time step,
after the geometry of the slide line boundary nodes have been updated from the last time step:

(1) The closest element on the adjacent domain is determined for each slide line node.

(2) For slide line nodes which are in contact with the adjacent domain: the normal
penetration, E, into the adjacent domain and the increment of sliding, 6, along the
adjacent domain's perimeter during the present time step is computed.

(3) The normal contact force, F, due to a nodes penetration of an adjacent domain
at time n is computed as

F n - k~nA

where k represents the normal stiffness of the joint and A is the tributary contact
area associated with the node. Currently, k is considered to be a constant but this
could be modified so that k = f(E).

(4) Equal and opposite reaction forces are distributed to the nodes which define the
penetrated element of the adjacent domain. Once this process is complete for all
nodes on both sides of the slide line, the total normal interaction force, I, at a
node is known. I includes F for the node and any reaction forces due to nodal
penetration from the adjacent domain.

(5) The normal contact stress, a, for each node at time n is defined as:

o In
A

(6) The joint shear stress, t, at time n is evaluated incrementally as:
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where g is the shear stiffness of the joint, assumed to be a constant. "t must also
satisfy the Coulomb friction limit defined as:

IT"I s C + 'n tancD

where C is the initial cohesion and f is the shear friction angle for the joint.

(7) Nodal forces due to "t are computed for each node and equal and opposite reaction
forces are distributed to the nodes of the adjacent contact surface.

(8) Slide line processing is complete for this time step.

Although the amount of joint slip anticipated to occur for the benchmark problems was
not great, the slide line approach was chosen to be used in the UTP Benchmark series since it
was anticipated that future problems of interest to DNA may include large amounts of joint slip
which would be outside the range of applicability of interface element modeling. Consequently,
the benchmark problems were seen as an opportunity to gain practical experience modeling joints
using slide lines.

E2.6 Artificial Viscosity.

FLEX allows the use of either linear or quadratic artificial viscosity for shock related
wave propagation. These viscosities allow the smoothing out of shocks which form in an
analysis due to the hardening behavior of certain types of materials such as many clays. These
controls provide a way to control spurious numerical oscillations within the model which occur
due to the fundamental frequency limitation of computational models. As is typical for most
codes, the viscosity is applied to the volumetric strain rate and is used for compressive strain
rates only.

E2.7 Boundary Conditions.

A number of boundary condition options are available within the program including
prescribed pressure, prescribed velocity and absorbing boundary conditions. The absorbing
boundary condition uses a standard normally incident plane wave assumption (Lysmer, J. and
Kuhlemeyer, R. L., 1969). The methodology is derived from one dimensional wave propagation
impulse-momentum balance relations. The applicable relationship for the normal velocity at an
absorbing boundary is:

vn. (E-2)

where Vn is the normal velocity, a is the normal stress, p is the mass density of the material and
CP is the dilatational wave speed of the material. The equivalent relationship for the tangential
motion at the boundary is:
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V (E-3)pl cs

where V, is the tangential velocity, Tr is the tangential shear stress, and c. is the shear wave speed
of the material.

E3. APPLICATION OF FLEX TO BENCHMARK PROBLEMS.

This section describes specific modeling issues and approaches which were used for the
series of benchmark problems. As mentioned previously, the slide line approach was used to
explicitly model joint behavior in all the benchmark analyses. No stiffness or mass propcrtional
damping was used. Standard values of artificial viscosity were used. All analysis were
performed using 2-D plane strain or axisymmetric models.

The first three benchmark problems are all composed of only a few blocks with explicitly
defined joints separating them. The last two benchmarks involved simulations which included
regions of the model with explicitly modeled blocks and joints and other regions with implicitly
jointed material.

Modeling problem 2 produced excessive numerical chatter in the joints. Improvements
in understanding the interaction of discrete blocks using slide line joint models allowed for
imp:oved modeling of the final two benchmark problems resulting in negligible numerical noise
and chatter due to joint contact.

E3.1 Constitutive Model.

The requested Drucker Prager constitutive model to be used for the benchmark problems
was represented within the program by fitting the failure surface of the standard two invariant
cap model to the Drucker Prager failure surface. The cap portion of the model was deactivated
for all calculations. The standard associated flow rule was utilized.

E3.2 Explicitly Jointed Regions.

In regions of the model where blocks and their surrounding joints were explicitly
modeled, all blocks were modeled as fully deformable solids with an 8 x 8 arrangement of 4
node quadrilateral continnum elements. Slide lines were placed on all sides of each block to
simulate the joint behavior. The normal stiffness, k, and shearing stiffness, g, of the joint were
assumed constant. Although the slide line penalty springs could have been altered to model the
specified nonlinear stiffness of the joints, the linear approximation was considered adequate and
facilitated matching the overall stiffness of the implicit and explicitly jointed regions throughout
the range of applied pressure loading.

E3.3 Implicitly Jointed Regions.

The implicitly jointed material accounts for the presence of joints within a continuum
region of the model by altering the constitutive parameters of the native continuum material.
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This approach (S;iirb. B., 11973) alters the elastic stiffness properties of the continuum so that
they represent the composite behavior of multiple layers of intact material separated by joints
with independent stiff,,ss cbbaracteristics. The modified continuum properties are assumed to
remain isotropic, i.e. the continuum region is assumed uniformly jointed in all directions. The
elastic bulk and shear modulus of the intact continuum material was K = 20 GPa and G= 12 GPa.
For implicitly jointed material, tae reduced elastic properties were K' = 9.5 GPa
and G' = 8.36 GPa. The equivalence of the implicit and explicitly jointed material was
demonstrated by performing 1-D rock column sim,.lations for both representations and comparing
time histories of stress and velocities at equivalent spatial locations.

E3.4 Static Overburden Solution.

A static solution of the model subjected to gi:,vitation'l !oading was performed to provide
the insitu stress state as initial conditions for the dynamic response analysis of Benchmark
Problems 3 and 4. The geometrical spreading included within the dynamic model was a
complication in performing a proper static analysis. Ti-As difficulty was avoided by wrapping
additional layers of elements around the dynatmic modei in order to produce a static model with
a globally oriented, rectangular outer perimeter. Th1is modei, subjected to gravitational load, was
then solved using dynamic relaxation. The dynamic analysis used the stress distribution from
the static analysis as appropriate initial conditions.

The dynamic response of the two benchmark problems with and without insitu initial
conditions was investigated. It was found that the insitu stress state was nst very important for
this group of problems dueu to the relatively low stress levels compared ?o the dynamic loading
applied.

E3.5 Boundary Conditions.

Standard boundary conditions (prescribed pressure time histories, symmetry planes, etc.)
were used for all benchmark problems. One item of note is the proper use of the absorbing
boundary at the bottom of the model for benchmark problems 4 and 5. The default dila~ational
wavespeed used for the absorbing conditions (Equations E-2 and E-3) are the elastic wave speeds
of the materiaL Since the loading wave speed of the continuum material for the applied loading
is significantly slower than the elastic wave speed, the bottom boundaries tended to reflect more
of the applied pressure wave than was desirable. Consequently, a proper loading wave speed was
determined for the material to more appropriately match the impedance characteristics of the
absorber to that of the discretized domain. Standard program options ailow, the user to override
the default elastic wavespeeds for absorbing boundary conditions when the need arises.
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E4. LESSONS LEARNED UNDER UTP BENCHMARK SERIES FOR MODELING
JOINTED BLOCK BEHAVIOR.'

The UTP series of benchmark problems provided a useful set of simul3tion problems and
a useful environment for evaluating and enhancing joiut modeling simula:ion capabilities. The
benchmark series consisted of a group of problems ranging from small, single element problems
to large jointed block assemblages. The solutions for the simpler problems could be evaluated
analytically to validate the numerical solutions. The more complex problems could be checked
for rational consistency and compared with other independent numerical solutions.

While progressing through the series of benchmark problems, WA gained some useful
insight into the application of its simulation software to jointed rock problems. This write up
briefly describes the primary lessons learned during the benchmark study phase.

E4.1 Representation of Joiiit Stiffness.

The penalty function slide line approach used in FLEX uses a default penalty spring
stiffness related to the geometric size of the elements adjacent to the slide line and their elastic
stiffness properties. This provides an internally computed spring stiffness which minimizes the
amount of slide line penetration which may occur but still provides a reasonable, stable time step
for the calculation. Initial benchmark calculations using default penalty spring values showed
them to be unacceptable when trying to simulate the macro effective stiffness of a jointed block
region when the prescribed joint stiffness differs significantly from the default value.

The code input was generalized to allow a user prescribed linear penalty spring stiffness,
K. This allows a user to match available joint stiffness data. This provides for a much better
representation of the stiffness characteristics of the jointed block assemblage.

E4 2 Numerical Chatter at Joints.

Our initial simulation of benchmark problem #2 manifested a significant amount of
numerical chatter or vibration. Numerical experiments using damping to control this chatter were
unsatisfactory. The problem was closely scrutinized to identify and understand the source of the
numerical noise. It was determined that there were two contributing issues:

(1) Numerical precision

(2) Treatment of slide line joints at block corners

E4.2.1 Numerical Precision Issues Related to Joint Modeling.

A re"ently acquired IBM RS/6000 workstation was used to perform the small benchmark
problem simulations. The larger benchmark problems were simulated on a CRAY computer at

1This subsection was provided during the review of the initial draft of the report to clarify
certain modifications implemented during the course of the study.
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Los Alamos. Benchmark #2 was run on the IBM using a single precision version of the FLEX

code.

We determined that for certain classes of problems, using a 32 bit precision algorithm for
slide line computations results in a significantly noisier response than if 64 bit arithmetic were
used. This results from the fact that the amount of penetration, F, which is computed by the slide
line logic is based on the global coordinates of slide line nodes. Small amounts of penetration
which would result in the initiation of resisting penalty function forces in a 64 bit computation
can result in an evaluation of no penetration using 32 bit logic. Consequently, 64 bit
computations tend to have a smoother contact initiation phase and a correspondingly smoother
response.

Follow-on computations were performed using 64 bit precision and resulted in reduced
noise and improved slide line response.

E4.2.2 Joint Corner Treatment for Blocks.

Another contribution to the numerical chatter observed in Bench •rk #2 was related to
the treatment of block comers. The jointed rock benchmark problems contain a number of
discrete blocks, each with joint planes all around. Each block is composed of a very stiff
material, which has the potential to exhibit a fair amount of elastic ringing. The basic penalty
function slide line approach defines the penalty spring forces acting on a node based on the
amount of the node's penetration into the surface of an adjacent domain or block. When a node
slides beyond the extent of an adjacent block's comer, it no longer can penetrate that block and
therefore it is no longer in contact with the block. Consequently, any previous penalty spring
forces which were applied to the node are removed. This sudden transition from a penetrating
node to a non-penetrating node can produce a local ringing of the node. Since the node is in
close proximity to the adjacent block's comer, the local ringing of the node can move it back into
contact with the block, causing an implification of the numerical oscillation of the node. The
larger the number of block comners within the model, the larger the number of potential sources
of numerical noise from this effect.

Upon careful considerations of the fundamental phy',ical phenomenon we are trying to
simulate for the jointed block problem, it was observed that the problem with the current comer
treatment derived from the assumption ihat the entire tributary area of the slide line which is
lumped at each node effectively "slides off" or "slides on" to an adjacent node instantaneously,
i.e. the node contact is binary (off or on) instead of graded as the node's tributary region slides
past the comer. This lumped behavior is fine for many types of problems but for the jointed
block problems with the level of discretization being used, the assumption of lumped contact
resulted in excessive numerical vibration.

In order to correct for this difficulty, the computation of slide line contact near comers
of blocks was extended in order to compute the proportion of a node's tributary area which is
in contact with the adjacent block. Therefore, as a node slid past the comer of an adjacent block
the penalty spring forces began to decrease smoothly in the proper proportion to the remaining
amount of contact area instead of instantaneously being reduced to zero. We suspect this
approach is analogous to the usage by Itasca of "rounded comers". While our comers are not
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technically rounded, the grading of a penalty spring's resistance as nodes slide off of or on to

a corner of a block produces a similar effect.

The extensions to the slide line logic were used for the series of larger benchmark
problems helping to produce well-behaved joint interaction computations.
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