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§7.1 BENCHMARK 1: INTERNALLY PRESSURIZED THICK CYLINDER

This chapter presents three benchmark examples that are often used to assess the performance of
FEM models for axisymmetric solid analysis.

They were previously included as part of Chapter 6, but have been split to a new Chapter on account
of length.

§7.1. Benchmark 1: Internally Pressurized Thick Cylinder

The first benchmark problem is that used in the previous Chapter to illustrate driver script preparation
for the QuadSOR code. It is illustrated in Figure 7.1, which reproduces Figure 6.1 for convenience.
The study in the present Section covers: effect of mesh refinement in the radial direction, relative
performance of 4-node versus 8-node quadrilateral elements, and influence of Poisson ratio ν when
passing from ν = 0 to near the incompressible limit ν ≈ 1

2 .

§7.1.1. Problem Description

Restating the problem: a cylindrical hollow tube of inner radius a and outer radius b is subjected
to internal pressure p. The tube and its cross section are shown in Figure 7.1. The tube extends
indefinitely along the z axis and is in a plane strain state along that direction. The material is
isotropic with elastic modulus E and Poisson’s ratio ν. A “slice” of thickness d is extracted and
discretized as shown in Figure 7.2 using using Ner quadrilateral ring elements along the radial
direction r and one along the axial direction z (In that Figure, Ner are 4 and 2 for the 4-node and
8-node quadrilateral meshes, respectively.) Nodes move in the radial direction only, which results
in the support conditions drawn in Figure 7.2(b,c).

r
p

2a

2b

internal pressure ptube extends indefinitely
along the z  axis and is in
a plane strain state 

z

r

(a) Thick cylindrical 
      tube under 
      internal pressure

(b) Tube cross 
       section

Figure 7.1. Pressurized thick cylinder benchmark problem. Reproduced from Figure 6.1 for
convenience.
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(c) 2-element Quad8 discretization of tube slice

(b) 4-element Quad4 discretization of tube slice

d
p
r3

p
r2

p
r1

r = a
r = b

(a) Thick cylindrical tube under
      internal pressure

r

r = a
r = b

p
r2

p
r1

�� � �� �� ��

�� � �� �� ��

�� � �� �� ��

�� � �� �� ��

d

d

"Salami Slice"

(1) (2)
1

2

3

4

5

6 8 10

7 9

1
2

4
5

6

3 8 10
13
12
11

7
9

(1) (2)

(4)(3)

Figure 7.2. Two example FEM discretizations for the pressurized thick cylinder benchmark.

§7.1.2. Exact Solution

The exact stress distribution1 across the wall is

σrr = p
a2

b2 − a2
(1 − b2

r2
), σzz = p

2a2ν

b2 − a2
,

σθθ = p
a2

b2 − a2
(1 + b2

r2
), others zero.

(7.1)

Note that σzz = 0 if ν = 0 and that σrr +σθθ does not depend on r . Transforming this stress field to
strains through e = E−1σ gives the exact strain field, which can be verified to satisfy ezz = 0. The
hoop strain thus obtained is eθθ = pa2 (1+ ν) (b2 + r2(1−2ν))/(E(b2 −a2)r2), which multiplied
by r yields the exact radial displacement

ur = p
a2(1 + ν)(b2 + r2(1 − 2ν))

E(b2 − a2)r
. (7.2)

§7.1.3. Driver Script

The Mathematica driver script listed in Figure 7.3 accepts both 4-node and 8-node quad elements.
Note that geometric, constitutive and discretization properties are declared at the top to make
parametrization simpler. To set the element type it is sufficient to declare etype in the second line
of the script to be either "Quad4" or "Quad8". The number of elements along the radial and axial
directions: Ner and Nez , are parametrized by the values assigned to Ner and Nez, respectively. The
latter is assumed to be 1 since the solution only depends on r .

1 Taken from S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, 2nd ed., 1951, Chapter 4, for a
condition of plane strain in the z direction. The solution is due to G. Lamé, Leçons sur la Théorie Mathématique de
l’Elasticité des Corps Solides, Paris, Bachellier, 1852.
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§7.1 BENCHMARK 1: INTERNALLY PRESSURIZED THICK CYLINDER

ClearAll[Em,ν,th,a,b,d,p,Ner,Nez];  
Em=1000.; ν=0.0; etype="Quad4"; numer=True; Ner=4; Nez=1;
Kfac=1; a=4; b=10; d=2; aspect=d/(b-a); p=10; 

(*  Define FEM model *)

MeshCorners=N[{{a,0},{b,0},{b,d},{a,d}}]; 
If [etype=="Quad4",
    NodeCoordinates=GenQuad4NodeCoordinates[MeshCorners,Ner,Nez]; 
    ElemNodes=GenQuad4ElemNodes[Ner,Nez]];
If [etype=="Quad8",
    NodeCoordinates=GenQuad8NodeCoordinates[MeshCorners,Ner,Nez]; 
    ElemNodes=GenQuad8ElemNodes[Ner,Nez]];
numnod=Length[NodeCoordinates]; numele=Length[ElemNodes]; 
ElemType=Table[etype,{numele}]; 
ElemMaterial=Table[N[{Em,ν}],{numele}]; 
FreedomTags=Table[{0,1},{numnod}];
FreedomValues=Table[{0,0},{numnod}]; pfor=N[Kfac*p*a*d];
If [etype=="Quad4",
    FreedomValues[[1]]=FreedomValues[[2]]={pfor/2,0}]; 
If [etype=="Quad8",
    FreedomValues[[1]]=FreedomValues[[3]]={pfor/6,0};
    FreedomValues[[2]] ={2*pfor/3,0}];  
ElemBodyForces= ElemTractionForces={}; DefaultOptions={numer};
(* Problem data print statements removed *)
Plot2DElementsAndNodes[NodeCoordinates,ElemNodes,aspect,
      "Press thick cylinder",True,True]; 
      
(*  Solve problem and print results *)

{NodeDisplacements,NodeForces,NodeStresses}=RingAnalysisDriver[
    NodeCoordinates,ElemType,ElemNodes,
    ElemMaterial,ElemBodyForces,ElemTractionForces,
    FreedomTags,FreedomValues,DefaultOptions];
PrintRingAnalysisSolution[NodeDisplacements,NodeForces,
     NodeStresses,"Computed solution",{}]; 
{ExactNodeDisplacements,ExactNodeStresses}=
     ExactSolution[NodeCoordinates,{a,b},{Em,ν,ρ},p,
     "PressThickCylinder",numer];
PrintRingNodeDispStresses[ExactNodeDisplacements,
    ExactNodeStresses,"Exact (Lame) solution",{}];   

(* Contour plots of stress distributions *)

legend={(a+b)/2,0.75*d}; whichones={True,True,True,False}; 
If [ν==0, whichones={True,False,True,False}]; 
ContourPlotStresses[NodeCoordinates,ElemNodes,NodeStresses,
  whichones,True,{},legend,aspect];
  
(* Radial plots comparing FEM vs exact solutions *)

pwhat={"ur","σrr","σzz","σθθ"};  
For [ip=1,ip<=Length[pwhat],ip++, what=pwhat[[ip]];
     RadialPlotFEMvsExact[etype,NodeCoordinates,NodeDisplacements,
       NodeStresses,{a,b},{Em,ν,ρ},p,{Ner,Nez},
      "PressThickCylinder",what,1,numer]  ];   

Figure 7.3. Driver script for pressurized thick cylinder benchmark. This one accepts both Quad4 and Quad8
elements, as well as (through mesh generation) arbitrary number of elements in the radial direction.
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If the element type is"Quad4" a regular mesh is generated by modulesGenQuad4NodeCoordinates
and GenQuad4ElemNodes, described in the previous Chapter. If the element type is Quad8 the
generation modules invoked are GenQuad8NodeCoordinates and GenQuad8ElemNodes. the ele-
ment type is "Quad8". Pressure lumping to the nodes on the inner radius r = a depends on element
type. The total pressure force is p f or = K f ac p a d, in which K f ac = 1 for QuadSOR because it
uses a one-radian circumferential ring span. That value is stored in pfor. If the element type is
"Quad4", the two innermost nodes 1 and 2 receive 1

2 p f or each. If the element type is "Quad8"
the three innermost nodes 1, 2 and 3 receive 1

6 p f or , 2
3 p f or and 1

6 p f or , respectively, in accordance
with consistent node force lumping.

§7.1.4. Results For Zero Poisson Ratio

The results presented here were computed for a = 4, b = 10, d = 2, p = 10, E = 1000, two
Poisson ratio values, two element types, and two radial discretizations for each type.

The script of Figure 7.3 specifically sets etype="Quad4", Ner=4 and ν = 0. The mesh is actually
that pictured in Figure 7.2(b). Computed and exact nodal values are tabulated in Figure 7.4. Radial
displacements ur , radial stresses σrr and hoop stresses σθθ are graphically compared over the wall
a ≤ r ≤ b with the exact solution in Figure 7.5(a).

As can be seen ur and σθθ are satisfactorily predicted. The hole-edge radial stress, however, is
significantly underestimated: σrr = −6.604 compared to the exact σrr = −p = −10. This is a
consequence of the impossibility of doing interelement stress averaging at that high-stress-gradient
edge. For this low-order model the variation of σrr in the r direction is limited to be constant
within the element. Thus σrr = −6.604 is more representative of the stress at the center of element
(1). The σrr agreement at other nodes is reasonable given the coarseness of the mesh. The higher
accuracy of the hoop stress σθθ is incidental, reflecting an idiosyncracy of axisymmetric solids: the
hoop strain εθθ = ur/r is not obtained through displacement differentiation. It thus attains the
same accuracy as ur . And for zero ν, σθθ = E εθθ = E ur/r .

Increasing Ner to 16 gives a solution that is compared with the exact one in Figure 7.5(b). Both ur

and σθθ are correct to at least 3 places. The only visible flaw is the discrepancy of σrr at the hole
boundary, where it gives σrr = −8.965 instead of −p = −10. Again this is a consequence of lack
of interelement averaging. Away from the hole σrr agrees with the exact solution to plot accuracy.

The analysis is then redone with the 8-node quadrilateral Quad8 with reduced (2 × 2) integration.
To make a fair comparison with Quad4, the Quad8 meshes contain half the elements: 2 and 8,
respectively, which results in a similar number of nodes.

The results of runningQuad8withNer=2 are tabulated in Figure 7.6. Radial displacements ur , radial
stresses σrr and hoop stresses σθθ are graphically compared over a ≤ r ≤ b with the exact solution
in Figure 7.7(a). This element is supposed to be nodally exact for one-dimensional problems, and
indeed the computed and exact ur may be verified to agree numerically to 15 places at all nodes.
The hoop stress should be also nodally exact since σθθ = E ur/r , but the extrapolation from Gauss
points introduces discrepancies. The computed radial stress σrr is as good as can be expected from
a linear variation over the element.

Running Quad8 with Ner=8 give the results plotted in Figure 7.7(b). Again the displacements are
nodally exact. Both σrr and σθθ agree everywhere with the exact solution at plot accuracy.
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§7.1 BENCHMARK 1: INTERNALLY PRESSURIZED THICK CYLINDER

node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz r−force z−force
1 0.0546 0.0000 −6.6040 0.0000 13.3193 0.0000 40.0000 0.0000
2 0.0546 0.0000 −6.6040 0.0000 13.3193 0.0000 40.0000 0.0000
3 0.0447 0.0000 −4.7954 0.0000 7.9555 0.0000 0.0000 0.0000
4 0.0447 0.0000 −4.7954 0.0000 7.9555 0.0000 0.0000 0.0000
5 0.0402 0.0000 −2.1293 0.0000 5.6858 0.0000 0.0000 0.0000
6 0.0402 0.0000 −2.1293 0.0000 5.6858 0.0000 0.0000 0.0000
7 0.0383 0.0000 −0.7984 0.0000 4.4821 0.0000 0.0000 0.0000
8 0.0383 0.0000 −0.7984 0.0000 4.4821 0.0000 0.0000 0.0000
9 0.0379 0.0000 −0.3250 0.0000 3.7674 0.0000 0.0000 0.0000
10 0.0379 0.0000 −0.3250 0.0000 3.7674 0.0000 0.0000 0.0000

node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz
1 0.0552 0.0000 −10.0000 0.0000 13.8095 0.0000
2 0.0552 0.0000 −10.0000 0.0000 13.8095 0.0000
3 0.0451 0.0000 −4.3920 0.0000 8.2015 0.0000
4 0.0451 0.0000 −4.3920 0.0000 8.2015 0.0000
5 0.0405 0.0000 −1.9825 0.0000 5.7920 0.0000
6 0.0405 0.0000 −1.9825 0.0000 5.7920 0.0000
7 0.0386 0.0000 −0.7316 0.0000 4.5411 0.0000
8 0.0386 0.0000 −0.7316 0.0000 4.5411 0.0000
9 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000
10 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000

Exact (Lame) solution

Computed solution

Figure 7.4. Pressurized thick cylinder benchmark: computed and exact nodal solution for 4-element
Quad4 model with Poisson ratio ν = 0. The mesh is that shown in Figure 7.2(b).

Press thick cyl: disp ur (black=exact,red=FEM)      Press thick cyl: stress σrr (black=exact,red=FEM)  Press thick cyl: stress σθθ (black=exact,red=FEM) 
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(a)  4 x 1 Mesh of Quad4 Elements, ν = 0:

(b)  16 x 1 Mesh of Quad4 Elements, ν = 0:

4          5          6         7          8          9    r    10 4          5          6         7          8          9    r    10 4          5          6         7          8          9    r    10

Press thick cyl: disp ur (black=exact,red=FEM)      Press thick cyl: stress σrr (black=exact,red=FEM)  Press thick cyl: stress σθθ (black=exact,red=FEM) 

Figure 7.5. Pressurized thick cylinder benchmark: r plots of computed versus exact ur , σrr and σθθ for
Quad4 meshes with ν = 0: (a) 4-element mesh, (b) 16-element mesh.

§7.1.5. Results For Near Incompressible Material

If Poisson ratio is increased over zero, Quad4 results gradually lose accuracy if the number of
elements is kept the same. In the limit ν → 1

2 , the material approaches incompressibility, and the
computed solution deterioration accelerates. This phenomenon is known as volumetric locking in
the FEM literature. To illustrate that degradation, the 4-element Quad4 mesh is run with ν = 0.499,
which exemplifies near-incompressible behavior.2

2 Setting ν = 1
2 exactly makes the elasticity matrix E, as well as K, “blow up” and no solution would be obtained.
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Exact (Lame) solution

Computed solution
node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz r−force z−force

1 0.0552 0.0000 −8.6085 0.0000 12.4181 0.0000 13.3333 0.0000
2 0.0552 0.0000 −8.6085 0.0000 12.4181 0.0000 53.3333 0.0000
3 0.0552 0.0000 −8.6085 0.0000 12.4181 0.0000 13.3333 0.0000
4 0.0451 0.0000 −4.8980 0.0000 8.7075 0.0000 0.0000 0.0000
5 0.0451 0.0000 −4.8980 0.0000 8.7075 0.0000 0.0000 0.0000
6 0.0405 0.0000 −1.4820 0.0000 5.2916 0.0000 0.0000 0.0000
7 0.0405 0.0000 −1.4820 0.0000 5.2916 0.0000 0.0000 0.0000
8 0.0405 0.0000 −1.4820 0.0000 5.2916 0.0000 0.0000 0.0000
9 0.0386 0.0000 −0.8163 0.0000 4.6259 0.0000 0.0000 0.0000
10 0.0386 0.0000 −0.8163 0.0000 4.6259 0.0000 0.0000 0.0000
11 0.0381 0.0000 0.1441 0.0000 3.6655 0.0000 0.0000 0.0000
12 0.0381 0.0000 0.1441 0.0000 3.6655 0.0000 0.0000 0.0000
13 0.0381 0.0000 0.1441 0.0000 3.6655 0.0000 0.0000 0.0000

node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz
1 0.0552 0.0000 −10.0000 0.0000 13.8095 0.0000
2 0.0552 0.0000 −10.0000 0.0000 13.8095 0.0000
3 0.0552 0.0000 −10.0000 0.0000 13.8095 0.0000
4 0.0451 0.0000 −4.3920 0.0000 8.2015 0.0000
5 0.0451 0.0000 −4.3920 0.0000 8.2015 0.0000
6 0.0405 0.0000 −1.9825 0.0000 5.7920 0.0000
7 0.0405 0.0000 −1.9825 0.0000 5.7920 0.0000
8 0.0405 0.0000 −1.9825 0.0000 5.7920 0.0000
9 0.0386 0.0000 −0.7316 0.0000 4.5411 0.0000
10 0.0386 0.0000 −0.7316 0.0000 4.5411 0.0000
11 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000
12 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000
13 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000

Figure 7.6. Pressurized thick cylinder benchmark: computed and exact nodal solution for 2-element
Quad8 model with Poisson ratio ν = 0. The mesh is that shown in Figure 7.2(c).
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(a)  2 x 1 Mesh of Quad8 Elements, ν = 0:

(b)  8 x 1 Mesh of Quad8 Elements, ν = 0:

4          5          6         7          8          9    r    10 4          5          6         7          8          9    r    10 4          5          6         7          8          9    r    10

Press thick cyl: disp ur (black=exact,red=FEM)      Press thick cyl: stress σrr (black=exact,red=FEM)  Press thick cyl: stress σθθ (black=exact,red=FEM) 

Press thick cyl: disp ur (black=exact,red=FEM)      Press thick cyl: stress σrr (black=exact,red=FEM)  Press thick cyl: stress σθθ (black=exact,red=FEM) 

Figure 7.7. Pressurized thick cylinder benchmark: r plots of computed versus exact ur , σrr and σθθ for
Quad8 meshes with ν = 0: (a) 2-element mesh, (b) 8-element mesh.

Computed and exact nodal values are tabulated in Figure 7.8. Radial displacements ur , radial
stresses σrr and hoop stresses σθθ are graphically compared over a ≤ r ≤ b with the exact solution
in Figure 7.9(a). Serious deficiencies can be observed. The radial displacement ur has the right
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Exact (Lame) solution

Computed solution
node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz r−force z−force

1 0.0170 0.0000 174.2420 176.2850 179.0340 0.0000 40.0000 −207.7300
2 0.0170 0.0000 174.2420 176.2850 179.0340 0.0000 40.0000 207.7300
3 0.0124 0.0000 −38.6784 −37.0706 −35.6114 0.0000 0.0000 55.3264
4 0.0124 0.0000 −38.6784 −37.0706 −35.6114 0.0000 0.0000 −55.3264
5 0.0097 0.0000 −14.2501 −13.2835 −12.3703 0.0000 0.0000 21.8783
6 0.0097 0.0000 −14.2501 −13.2835 −12.3703 0.0000 0.0000 −21.8783
7 0.0080 0.0000 −6.2986 −5.6522 −5.0285 0.0000 0.0000 7.4675
8 0.0080 0.0000 −6.2986 −5.6522 −5.0285 0.0000 0.0000 −7.4675
9 0.0068 0.0000 −20.6648 −20.1323 −19.6805 0.0000 0.0000 43.2181
10 0.0068 0.0000 −20.6648 −20.1323 −19.6805 0.0000 0.0000 −43.2181

node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz
1 0.0714 0.0000 −10.0000 1.9010 13.8095 0.0000
2 0.0714 0.0000 −10.0000 1.9010 13.8095 0.0000
3 0.0519 0.0000 −4.3920 1.9010 8.2015 0.0000
4 0.0519 0.0000 −4.3920 1.9010 8.2015 0.0000
5 0.0408 0.0000 −1.9825 1.9010 5.7920 0.0000
6 0.0408 0.0000 −1.9825 1.9010 5.7920 0.0000
7 0.0336 0.0000 −0.7316 1.9010 4.5411 0.0000
8 0.0336 0.0000 −0.7316 1.9010 4.5411 0.0000
9 0.0286 0.0000 0.0000 1.9010 3.8095 0.0000
10 0.0286 0.0000 0.0000 1.9010 3.8095 0.0000

Figure 7.8. Pressurized thick cylinder benchmark: computed and exact nodal solution for 4-element
Quad4 mesh with Poisson ratio ν = 0.499. The mesh is that shown in Figure 7.2(b).
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(a)  4 x 1 Mesh of Quad4 Elements, ν = 0.499:

(b)  16 x 1 Mesh of Quad4 Elements, ν = 0.499:
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Press thick cyl: disp ur (black=exact,red=FEM)      Press thick cyl: stress σrr (black=exact,red=FEM)  Press thick cyl: stress σθθ (black=exact,red=FEM) 

Press thick cyl: disp ur (black=exact,red=FEM)      Press thick cyl: stress σrr (black=exact,red=FEM)  Press thick cyl: stress σθθ (black=exact,red=FEM) 

Figure 7.9. Pressurized thick cylinder benchmark: r plots of computed versus exact ur , σrr and σθθ for
Quad4 meshes with ν = 0.499: (a) 4-element mesh, (b) 16-element mesh.

profile but is only about 20% of the correct values; for example at r = a the computed value
is 0.0170 versus 0.0714. All stress components violently oscillate as one approaches the inner
boundary, and the values taken there are nonsensical. For example σrr ≈ 174 at r = a whereas it
should be −p = −10, so it even has the wrong sign.

The number of elements is then increased to 16. Results are compared with the exact solution in
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Chapter 7: AXISYMMETRIC SOLID BENCHMARK PROBLEMS

node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz r−force z−force
1 0.0714 0.0000 −8.6085 1.9010 12.4181 0.0000 13.3333 −3.8019
2 0.0714 0.0000 −8.6085 1.9010 12.4181 0.0000 53.3333 0.0000
3 0.0714 0.0000 −8.6085 1.9010 12.4181 0.0000 13.3333 3.8019
4 0.0519 0.0000 −4.8980 1.9010 8.7075 0.0000 0.0000 −20.9105
5 0.0519 0.0000 −4.8980 1.9010 8.7075 0.0000 0.0000 20.9105
6 0.0408 0.0000 −1.4820 1.9010 5.2916 0.0000 0.0000 −13.3067
7 0.0408 0.0000 −1.4820 1.9010 5.2916 0.0000 0.0000 0.0000
8 0.0408 0.0000 −1.4820 1.9010 5.2916 0.0000 0.0000 13.3067
9 0.0336 0.0000 −0.8163 1.9010 4.6259 0.0000 0.0000 −32.3162
10 0.0336 0.0000 −0.8163 1.9010 4.6259 0.0000 0.0000 32.3162
11 0.0286 0.0000 0.1441 1.9010 3.6655 0.0000 0.0000 −9.5048
12 0.0286 0.0000 0.1441 1.9010 3.6655 0.0000 0.0000 0.0000
13 0.0286 0.0000 0.1441 1.9010 3.6655 0.0000 0.0000 9.5048

node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz
1 0.0714 0.0000 −10.0000 1.9010 13.8095 0.0000
2 0.0714 0.0000 −10.0000 1.9010 13.8095 0.0000
3 0.0714 0.0000 −10.0000 1.9010 13.8095 0.0000
4 0.0519 0.0000 −4.3920 1.9010 8.2015 0.0000
5 0.0519 0.0000 −4.3920 1.9010 8.2015 0.0000
6 0.0408 0.0000 −1.9825 1.9010 5.7920 0.0000
7 0.0408 0.0000 −1.9825 1.9010 5.7920 0.0000
8 0.0408 0.0000 −1.9825 1.9010 5.7920 0.0000
9 0.0336 0.0000 −0.7316 1.9010 4.5411 0.0000
10 0.0336 0.0000 −0.7316 1.9010 4.5411 0.0000
11 0.0286 0.0000 0.0000 1.9010 3.8095 0.0000
12 0.0286 0.0000 0.0000 1.9010 3.8095 0.0000
13 0.0286 0.0000 0.0000 1.9010 3.8095 0.0000

Exact (Lame) solution

Computed solution

Figure 7.10. Pressurized thick cylinder benchmark: computed and exact nodal solution for 2-element
Quad8 mesh with Poisson ratio ν = 0.499. The mesh is that shown in Figure 7.2(b).
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(b)  8 x 1 Mesh of Quad8 Elements, ν = 0.499:
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Figure 7.11. Pressurized thick cylinder benchmark: r plots of computed versus exact ur , σrr and σθθ for
Quad8 meshes with ν = 0.499: (a) 2-element mesh, (b) 8-element mesh.

Figure 7.9(b). The displacements ur are more reasonable although still visibly off. The violent
stress oscillation moves closer to the inner boundary, and results there are even worse than with the
4-element mesh. A minor stress oscillation can be observed at the outer boundary.
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§7.2 BENCHMARK EXAMPLE 2: ROTATING THIN DISK
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Figure 7.12. Rotating thin disk benchmark problem.

Changing the FEM model to Quad8 with reduced integration makes a big difference. For a 2-
element mesh like that shown in Figure 7.2(c), computed and exact nodal values are tabulated in
Radial displacements ur , radial stresses σrr and hoop stresses σθθ are graphically compared over
a ≤ r ≤ b with the exact solution in Figure 7.11(a). As can be seen the model retains nodal
exactness for displacements. Neither volumetric locking nor stress oscillations are observed, and
the stresses are well predicted everywhere.

The number of elements is then increased to 8. Results are compared with the exact solution in
Figure 7.11(b). The agreement with the exact solution is excellent.

In summary, the Quad4 model is useless for near-incompressible material in this benchmark and,
in general, when modeling bulky axisymmetric solids.3. On the other hand, the rediced integration
Quad8 can be strongly recommended for those problems.

Remark 7.1. If Quad8 is processed by a 3 × 3 integration Gauss rule, which represents full integration,
volumetric locking reappears. So going from Quad4 to Quad8 is not sufficient: the integration rule makes a
significant difference for near-incompressible behavior.

§7.2. Benchmark Example 2: Rotating Thin Disk

The second benchmark problem is a hollow, thin circular disk of thickness h, inner radius a and
outer radius b, which spins about the z axis with constant angular frequency ω. The material is
isotropic with elastic modulus E and Poisson’s ratio ν and mass density ρ. The r axis is placed in
the disk midplane. See Figure 7.12(a,b).

3 The effect of volumetric locking is not so pronounced in the other two benchmarks because the plane strain condition is
replaced by one of plane stress.
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Chapter 7: AXISYMMETRIC SOLID BENCHMARK PROBLEMS

The FEM discretizations pictured in Figure 7.12(c,d) mimic those used in the pressurized thick
cylinder benchmark, as shown in Figure 7.2(b,c). The number of elements in the radial direction
is 4 and 16 for Quad4 and 2 and 8 for Quad8, respectively. Only one element is used in the axial
direction. Nodes are allowed to move radially. Unlike the previous benchmark, however, movement
in the axial (z) direction is permitted to allow for disk thickness contraction due to Poisson ratio.
This motion is accomodated by constraining nodes in one of the constant-z surfaces to be on rollers
as shown in Figure 7.12(c,d). All other nodes are left free. The only load is a centrifugal body force
acting along r : br = ρ ω2 r while bz = 0.

§7.2.1. Exact Solution

The exact stress distribution for a condition of plane stress in the z direction is 4

σrr = ρ ω2 r
3 + ν

8

(
b2 + a2 − a2 b2

r2
− r2

)
,

σθθ = ρ ω2 r
3 + ν

8

(
b2 + a2 + a2 b2

r2
− (1 + 3ν)r2

(3 + ν)

)
,

(7.3)

others zero. Recovering strains from (7.3) and integrating yields the displacements

ur =ρ ω2 a2(3 + ν)
(
r2(1 − ν) + b2(1 + ν)

) + r2(1 − ν)
(
b2(3 + ν) − r2(1 + ν)

)
8 E r

,

uz =ρ ω2 z ν
(1 − ν − 2ν2)

(
2r2(1 + ν) − a2(3 + ν) − b2(3 + ν)

)
4E (1 + 3ν)

.

(7.4)

Notice that uz = 0 at z = 0, which removes the axial rigid body motion. If ν = 0, uz = 0 as may
be expected, whereas if ν = 1

2 , uz = 1
2ρ ω2 z.

§7.2.2. Driver Script

The Mathematica driver script listed in Figure 7.13 accepts both 4-node and 8-node quad elements.
Note that geometric, constitutive and discretization properties are declared at the top to make
parametrization simpler. To set the element type it is sufficient to declare etype in the second line
of the script to be either "Quad4" or "Quad8". The number of elements along the radial and axial
directions: Ner and Nez , are parametrized by the values assigned to Ner and Nez, respectively. The
latter is assumed to be 1.

If the element type is"Quad4" a regular mesh is generated by modulesGenQuad4NodeCoordinates
and GenQuad4ElemNodes, described in the previous Chapter. If the element type is Quad8 the
generation modules invoked are GenQuad8NodeCoordinates and GenQuad8ElemNodes. the ele-
ment type is "Quad8". Pressure lumping to the nodes on the inner radius r = a depends on element
type. The body force field is specified at the 4 element corner nodes, regardless of whether the
element type is Quad4 or Quad8.

4 Taken from S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, 2nd ed., 1951, Chapter 4. If a → 0
the solution has a removable singularity at r = 0.
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§7.2 BENCHMARK EXAMPLE 2: ROTATING THIN DISK

ClearAll[Em,ν,a,b,h,Kfac,ρ, ,Ner,Nez,numer];   
Em=1000.; ν=N[1/3];  Ner=4; Nez=1; etype="Quad4";
Kfac=1; a=4; b=10; h=1; aspect=h/(b-a); ρ=3.0;  ω=0.5;
numer=True;

(*  Define FEM model *)

MeshCorners=N[{{a,0},{b,0},{b,h},{a,h}}];
If [etype=="Quad4",
    NodeCoordinates=GenQuad4NodeCoordinates[MeshCorners,Ner,Nez];      
    ElemNodes=  GenQuad4ElemNodes[Ner,Nez]];
If [etype=="Quad8",
    NodeCoordinates=GenQuad8NodeCoordinates[MeshCorners,Ner,Nez];      
    ElemNodes=  GenQuad8ElemNodes[Ner,Nez]];
numnod=Length[NodeCoordinates]; numele=Length[ElemNodes];
ElemType=      Table[etype,{numele}]; 
ElemMaterial=  Table[{Em,ν},{numele}]; 
ElemBodyForces=Table[{0,0},{numele}];
For [e=1,e<=numele,e++, enl=ElemNodes[[e]];
     ncoor=Table[NodeCoordinates[[enl[[i]]]],{i,4}];
     {{r1,z1},{r2,z2},{r3,z3},{r4,z4}}=ncoor;
     ElemBodyForces[[e]]=ρ* ^2*{{r1,0},{r2,0},{r3,0},{r4,0}}]; 
FreedomTags=FreedomValues=Table[{0,0},{numnod}];
If [etype=="Quad4",  
    For [n=1,n<=numnod-Nez,n=n+Nez+1, FreedomTags[[n]]={0,1}]];
If [etype=="Quad8",  
    For [n=1,n<=numnod-2*Nez,n=n+3*Nez+2, FreedomTags[[n+1]]={0,1}]];
ElemTractionForces={}; DefaultOptions={True};
(* Model definition print statements removed to shorten script *)
Plot2DElementsAndNodes[NodeCoordinates,ElemNodes,aspect,
    "Rotating disk mesh",True,True]; 
  
(*  Solve problem and print results *)

{NodeDisplacements,NodeForces,NodeStresses}=RingAnalysisDriver[
    NodeCoordinates,ElemType,ElemNodes,
    ElemMaterial,ElemBodyForces,ElemTractionForces,
    FreedomTags,FreedomValues,DefaultOptions];
PrintRingAnalysisSolution[NodeDisplacements,NodeForces,
    NodeStresses,"Computed solution",{}]; 
{ExactNodeDisplacements,ExactNodeStresses}=
    ExactSolution[NodeCoordinates,{a,b,h},{Em,ν,ρ

},

 ,
     "RotatingThinDisk",numer];
PrintRingNodeDispStresses[ExactNodeDisplacements,
    ExactNodeStresses,"Exact solution",{}]; 
    

legend={(a+b)/2,0.75*h}; whichones={True,False,True,False}; 
ContourPlotStresses[NodeCoordinates,ElemNodes,NodeStresses,
  whichones,True,{},legend,aspect];
  
(* Radial plots comparing FEM vs exact solutions *)

pwhat={"ur","σrr","σzz","σθθ"};
For [ip=1,ip<=Length[pwhat],ip++, what=pwhat[[ip]];
     RadialPlotFEMvsExact[etype,NodeCoordinates,NodeDisplacements,
       NodeStresses,{a,b,h},{Em,ν,ρ}, ,{Ner,Nez},
       "RotatingThinDisk",what,0,numer]  ]; 

(* Contour plots of stress distributions *)

Figure 7.13. Script for rotating disk benchmark problem.
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Chapter 7: AXISYMMETRIC SOLID BENCHMARK PROBLEMS

Exact (plane stress) solution

Computed solution
node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz r−force z−force

1 0.2567 0.0000 12.2963 2.3994 67.8220 −0.7835 5.7305 −0.5185
2 0.2547 −0.0243 12.6637 2.3936 67.4372 0.7073 5.7305 0.0000
3 0.2401 0.0000 7.7905 −0.6290 45.3527 −0.5037 17.2266 1.3833
4 0.2387 −0.0183 8.1077 −0.5589 45.2458 0.5598 17.2266 0.0000
5 0.2354 0.0000 9.2003 −0.6720 36.1805 −0.4128 27.7734 −1.3919
6 0.2343 −0.0158 9.1420 −0.7594 35.9764 0.4104 27.7734 0.0000
7 0.2322 0.0000 6.1607 0.0342 29.2155 −0.4599 40.8516 0.6446
8 0.2309 −0.0118 6.0606 −0.0697 29.0039 0.4653 40.8516 0.0000
9 0.2246 0.0000 2.9120 0.3871 23.4411 −0.4071 25.4180 −0.1175
10 0.2235 −0.0084 2.9721 0.3768 23.3500 0.4331 25.4180 0.0000

node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz
1 0.2580 0.0000 0.0000 0.0000 64.5000 0.0000
2 0.2580 −0.0048 0.0000 0.0000 64.5000 0.0000
3 0.2403 0.0000 10.2679 0.0000 47.1071 0.0000
4 0.2403 −0.0043 10.2679 0.0000 47.1071 0.0000
5 0.2358 0.0000 10.7334 0.0000 37.2666 0.0000
6 0.2358 −0.0036 10.7334 0.0000 37.2666 0.0000
7 0.2327 0.0000 6.7515 0.0000 29.6235 0.0000
8 0.2327 −0.0027 6.7515 0.0000 29.6235 0.0000
9 0.2250 0.0000 0.0000 0.0000 22.5000 0.0000
10 0.2250 −0.0017 0.0000 0.0000 22.5000 0.0000

Figure 7.14. Rotating disk benchmark: computed results and exact solution for 4-element Quad4
mesh, with Poisson ratio ν = 1/3.

Rotating disk: disp ur (black=exact,red=FEM)       Rotating disk: stress σrr (black=exact,red=FEM)       Rotating disk: stress σθθ (black=exact,red=FEM) 
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(b)  16 x 1 Mesh of Quad4 Elements, ν = 1/3:
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Figure 7.15. Rotating disk benchmark: radial plots of ur , σrr and σθθ for 4-element and 16-element
Quad4, with Poisson ratio ν = 1/3.

§7.2.3. Numerical Results

The results presented here were computed for a = 4, b = 10, h = 1, p = 10, E = 1000, ν = 1/3,
two element types, and two radial discretizations for each type.

The script of Figure 7.13 specifically sets etype="Quad4", Ner=4 and ν = 1/3. The mesh
is actually that pictured in Figure 7.12(c). Computed and exact nodal values are tabulated in
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§7.2 BENCHMARK EXAMPLE 2: ROTATING THIN DISK

Exact (plane stress) solution

Computed solution
node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz r−force z−force

1 0.2577 0.0108 4.2728 0.0000 61.2000 0.0000 −6.8437 0.0000
2 0.2579 0.0000 4.2728 0.0000 61.2000 0.0000 19.1250 0.0000
3 0.2577 −0.0108 4.2728 0.0000 61.2000 0.0000 −6.8437 0.0000
4 0.2401 0.0096 8.7239 0.0000 48.2944 0.0000 23.2500 0.0000
5 0.2401 −0.0096 8.7239 0.0000 48.2944 0.0000 23.2500 0.0000
6 0.2356 0.0080 12.5046 0.0000 36.2225 0.0000 −20.0625 0.0000
7 0.2358 0.0000 12.5046 0.0000 36.2225 0.0000 75.7500 0.0000
8 0.2356 −0.0080 12.5046 0.0000 36.2225 0.0000 −20.0625 0.0000
9 0.2324 0.0061 6.3024 0.0000 29.7056 0.0000 54.7500 0.0000
10 0.2324 −0.0061 6.3024 0.0000 29.7056 0.0000 54.7500 0.0000
11 0.2247 0.0037 0.7706 0.0000 22.3550 0.0000 −12.0937 0.0000
12 0.2251 0.0000 0.7706 0.0000 22.3550 0.0000 61.1250 0.0000
13 0.2247 −0.0037 0.7706 0.0000 22.3550 0.0000 −12.0937 0.0000

node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz
1 0.2580 0.0000 0.0000 0.0000 64.5000 0.0000
2 0.2580 −0.0024 0.0000 0.0000 64.5000 0.0000
3 0.2580 −0.0048 0.0000 0.0000 64.5000 0.0000
4 0.2403 0.0000 10.2679 0.0000 47.1071 0.0000
5 0.2403 −0.0043 10.2679 0.0000 47.1071 0.0000
6 0.2358 0.0000 10.7334 0.0000 37.2666 0.0000
7 0.2358 −0.0018 10.7334 0.0000 37.2666 0.0000
8 0.2358 −0.0036 10.7334 0.0000 37.2666 0.0000
9 0.2327 0.0000 6.7515 0.0000 29.6235 0.0000
10 0.2327 −0.0027 6.7515 0.0000 29.6235 0.0000
11 0.2250 0.0000 0.0000 0.0000 22.5000 0.0000
12 0.2250 −0.0008 0.0000 0.0000 22.5000 0.0000
13 0.2250 −0.0017 0.0000 0.0000 22.5000 0.0000

Figure 7.16. Rotating disk benchmark: computed results and exact solution for 2-element Quad8
mesh, with Poisson ratio ν = 1/3.

Rotating disk: disp ur (black=exact,red=FEM)       Rotating disk: stress σrr (black=exact,red=FEM)       Rotating disk: stress σθθ (black=exact,red=FEM) 
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(b)  8 x 1 Mesh of Quad8 Elements, ν = 1/3:
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Figure 7.17. Rotating disk benchmark: radial plots of ur , σrr and σθθ for 2-element and 8-element
Quad8 meshes, with Poisson ratio ν = 1/3.

Figure 7.14. Radial displacements ur , radial stresses σrr and hoop stresses σθθ are graphically
compared over a ≤ r ≤ b with the exact solution in Figure 7.15(a).

As can be seen ur and σθθ are satisfactorily predicted. The radial stress, however, is way off,
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Chapter 7: AXISYMMETRIC SOLID BENCHMARK PROBLEMS

especially at the inner and outer boundaries, at which it should be zero. This is again a consequence
of the impossibility of doing interelement stress averaging there. For this low-order model the
variation of σrr in the r direction is limited to be constant within the element.

Increasing Ner to 16 gives a solution that is compared with the exact one in Figure 7.15(b). Both ur

and σθθ are correct to at least 3 places. The notable flaw is the discrepancy of σrr at both boundaries.
Again this is a consequence of lack of interelement averaging. Away from the hole σrr agrees with
the exact solution to satisfactory accuracy.

The analysis is then redone with the 8-node quadrilateral Quad8 with reduced (2 × 2) integration.
To make a fair comparison with Quad4, the Quad8 meshes contain half the elements: 2 and 8,
respectively, which results in a similar number of nodes.

The results of running Quad8 with Ner=2 are tabulated in Figure 7.16. Radial displacements ur ,
radial stresses σrr and hoop stresses σθθ are graphically compared over a ≤ r ≤ b with the exact
solution in Figure 7.17(a). This element is supposed to be nodally exact for one-dimensional
problems, and indeed the computed and exact ur may be verified to agree numerically to 15 places
at all nodes. The hoop stress should be also nodally exact since σθθ = E ur/r , but the extrapolation
from Gauss points introduces discrepancies. The computed radial stress σrr is as good as can be
expected from a linear variation over the element.

Running Quad8 with Ner=8 give the results plotted in Figure 7.17(b). Again the displacements are
nodally exact. Both σrr and σθθ agree everywhere with the exact solution at plot accuracy.

Rerunning these cases for a Poisson ratio close to 1
2 shows deteriorartion of Quad4 accuracy, but

not so dramatic as that experienced in the pressurized thick cylinder benchmark. This indicates
that volumetric locking is less of a problem in this case, as could be expected since the plane stress
condition allows lateral expansion and contraction.
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§7.3 BENCHMARK 3: POINT LOADED SS CIRCULAR PLATE BENDING
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Figure 7.18. Point-loaded circular plate bending benchmark problem.

§7.3. Benchmark 3: Point Loaded SS Circular Plate Bending

The third benchmark problem is a simply-supported (SS) circular plate bent by a lateral point load.
The plate has radius R and thickness h. The point load of magnitude P acts downward at the plate
center. The material is isotropic with elastic modulus E and Poisson’s ratio ν. See Figure 7.18(a,b)
for the problem definition.

Two FEM discretizations are pictured in Figure 7.18(c,d).

For the Quad4 element type 4×2 and 16×2 discretizations are used, whereas for Quad8 the meshes
are 2 × 1 and 8 × 1. The reason for selecting 2 elements along z for the Quad4 discretization is
that it provides nodes at the midplane z = 0, allowing a midplane-symmetric specification of the
simple supported BC at r = R.

For the Quad8 discretization one element along z is suffiucient since several midnodes are available
on the midplane. Nodes are allowed to move in the z direction except those on the midplane z = 0
at r = R. The 3 nodes at r = 0 must be constrained against radial motion. The resulting support
conditions are shown in Figure 7.18(c,d). The central point load P is divided by 2 since K f ac = 1
and then appropriately lumped to the 3 nodes on the z axis.
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§7.3.1. Exact Solution

The exact solution5 for a Kirchhoff plate model of this problem6 gives the bending moments and
associated stresses as

Mrr = P

4π
(1 + ν) log

R

r
, σrr = 12Mrr z/h3,

Mθθ = P

4π

[
(1 + ν) log

R

r
+ 1 − ν

]
, σθθ = 12Mθθ z/h3,

(7.5)

Other stress components are zero. Moments and stresses given by (7.5) become infinite at r = 0
under the point load, so when comparing to a FEM solution r is limited to r ≤ rtruc = R/1000 to
avoid blow-ups. The stresses at the upper and lower plate surfaces are σrr = ±12Mrr (h/2)/h3 =
±6Mrr/h2 and σθθ = ±12Mθθ (h/2)/h3 = ±6Mθθ /h2. The transverse displacement is

uz = − P

16π D

[
3 + ν

1 + ν
(R2 − r2) + 2r2 log

r

R

]
, (7.6)

where D = Eh3/(12(1 − ν2)) is the plate rigidity. Note that uz does not depend on z, which
follows from the Kirchhoff thin plate theory assumptions. Also uz is finite at r = 0 because
lim r→0 r2 log(r/R) = 0. The radial displacement is given by

ur = −z
∂uz

∂r
= P

8π D

(
3 + ν

1 + ν
− 1 − 2 log

r

R

)
r z, (7.7)

which also vanishes at r = 0.

§7.3.2. Driver Script

The driver script for the point-loaded circular plate benchmark is listed in Figure 7.19. This is
similar to the previous scripts except for the use of 2 elements along the thickness (the axial or z
direction) if the element type is Quad4. The central force is scaled by K f ac/(2π) = 1/(2π) and
distributed to the 3 nodes at r = 0.

5 Taken from S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, 2nd ed., 1959, Ch. 2.
6 The Kirchhoff model assumes that the plate is thin in the sense that h << R, but not so thin as to become a membrane.
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§7.3 BENCHMARK 3: POINT LOADED SS CIRCULAR PLATE BENDING

ClearAll[Em,ν,a,b,h,Kfac,ρ, ,Ner,Nez,numer];   
Em=1000.; ν=N[1/3];  Ner=4; Nez=1; etype="Quad4";
Kfac=1; a=4; b=10; h=1; aspect=h/(b-a); ρ=3.0;  =0.5;
numer=True;

(*  Define FEM model *)

MeshCorners=N[{{a,0},{b,0},{b,h},{a,h}}];
If [etype=="Quad4",
    NodeCoordinates=GenQuad4NodeCoordinates[MeshCorners,Ner,Nez];      
    ElemNodes=  GenQuad4ElemNodes[Ner,Nez]];
If [etype=="Quad8",
    NodeCoordinates=GenQuad8NodeCoordinates[MeshCorners,Ner,Nez];      
    ElemNodes=  GenQuad8ElemNodes[Ner,Nez]];
numnod=Length[NodeCoordinates]; numele=Length[ElemNodes];
ElemType=      Table[etype,{numele}]; 
ElemMaterial=  Table[{Em,ν},{numele}]; 
ElemBodyForces=Table[{0,0},{numele}];
For [e=1,e<=numele,e++, enl=ElemNodes[[e]];
     ncoor=Table[NodeCoordinates[[enl[[i]]]],{i,4}];
     {{r1,z1},{r2,z2},{r3,z3},{r4,z4}}=ncoor;
     ElemBodyForces[[e]]=ρ* ^2*{{r1,0},{r2,0},{r3,0},{r4,0}}]; 
FreedomTags=FreedomValues=Table[{0,0},{numnod}];
If [etype=="Quad4",  
    For [n=1,n<=numnod-Nez,n=n+Nez+1, FreedomTags[[n]]={0,1}]];
If [etype=="Quad8",  
    For [n=1,n<=numnod-2*Nez,n=n+3*Nez+2, FreedomTags[[n+1]]={0,1}]];
ElemTractionForces={}; DefaultOptions={True};
(* Print model definition statements removed to shorten script *)
Plot2DElementsAndNodes[NodeCoordinates,ElemNodes,aspect,
    "Rotating disk mesh",True,True]; 
  
(*  Solve problem and print results *)

{NodeDisplacements,NodeForces,NodeStresses}=RingAnalysisDriver[
    NodeCoordinates,ElemType,ElemNodes,
    ElemMaterial,ElemBodyForces,ElemTractionForces,
    FreedomTags,FreedomValues,DefaultOptions];
PrintRingAnalysisSolution[NodeDisplacements,NodeForces,
    NodeStresses,"Computed solution",{}]; 
{ExactNodeDisplacements,ExactNodeStresses}=
    ExactSolution[NodeCoordinates,{a,b,h},{Em,ν,ρ}, ,
     "RotatingThinDisk",numer];
PrintRingNodeDispStresses[ExactNodeDisplacements,
    ExactNodeStresses,"Exact solution",{}]; 
    
(*  Contour plot of stress distributions *)

legend={(a+b)/2,0.75*h}; whichones={True,False,True,False}; 
ContourPlotStresses[NodeCoordinates,ElemNodes,NodeStresses,
  whichones,True,{},legend,aspect];
  
(* Radial plots comparing FEM vs exact solution *)

pwhat={"ur","σrr","σzz","σθθ"};
For [ip=1,ip<=Length[pwhat],ip++, what=pwhat[[ip]];
     RadialPlotFEMvsExact[etype,NodeCoordinates,NodeDisplacements,
       NodeStresses,{a,b,h},{Em,ν,ρ}, ,{Ner,Nez},
       "RotatingThinDisk",what,0,numer]  ]; 

Figure 7.19. Script for point loaded circular plate benchmark problem.
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Chapter 7: AXISYMMETRIC SOLID BENCHMARK PROBLEMS

§7.3.3. Numerical Results

The numerical results presented here were computed for R = 10, h = 1, E = 1000, ν = 1/3 and
P = 10, two element types, and two discretizations for each type.

The script of Figure 7.19 specifically sets etype="Quad4", Ner=4, Nez=2 and ν = 1/3. The
mesh is actually that pictured in Figure 7.18(c). Computed and exact nodal values are tabulated
in Figure 7.20. The values shown as “exact” for stresses σrr and σθθ are actually those evaluated
from the Kirchhoff solution (7.6) at r = R/1000 = 1/100, since those equations have logarithmic
singularities as r → 0. Radial displacements ur , radial stresses σrr and hoop stresses σθθ are
graphically compared over a ≤ r ≤ b with the exact solution in Figure 7.21(a). To avoid plot
blow-ups the “exact” solutions are again truncated to that small radius.

The radial displacement has the right shape but is underpredicted. This is a mild case of the so-called
“shear locking”: a significant amount of element energy is spend in shear, resulting in overstiffness.
The effect would get worse if the thickness-to-radius ratio (1/10 for this benchmark) is decreased.
Considering the coarse mesh the stress predictions are OK sufficiently away from the plate center,
say, for r > 2. Evidently the FEM solution has trouble capturing the singularity; for that a refined
mesh near the center would be required.

Increasing Ner to 16 gives a solution that is compared with the exact one in Figure 7.21(b). Shear
locking is alleviated but the transverse displacement is still somewaht underpredicted. The stress
distribution away from the center are significantly improved, but the singularity is still poorly
captured.

The analysis is then redone with the 8-node quadrilateral Quad8 with reduced (2 × 2) integration.
To make a fair comparison with Quad4, the Quad8 meshes contain half the elements: 2 and 8,
respectively, in the radial direction, and only one in the axial direction.

The results of running Quad8 with Ner=2 are tabulated in Figure 7.22. Radial displacements ur ,
radial stresses σrr and hoop stresses σθθ are graphically compared over a ≤ r ≤ b with the exact
solution in Figure 7.23(a). It can be seen that the transverse displacement uz is well captured (within
about 1%) since this element does not suffer from shear locking. The stress distribution is fine away
from the center. Capturing the singularity is obviously difficult with 2 elements and a linear stress
variation radially, but the model does a good fitting job.

Running Quad8 with Ner=8 give the results plotted in Figure 7.23(b). The fit to both displacements
and stresses is good, even fairly close to the singularity. No trace of shear locking is observed.

Rerruning these models with ν = 0.499 (results not shown here) degrades the Quad4 results further
(some volumetric locking adds to the shear locking)but has little effect on the Quad8 discretization.

7–20



Exercises

Thin plate (Kirchhoff) solution

Computed solution
node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz r−force z−force

1 0.0000 −0.4227 13.4338 4.1445 13.4338 10.6640 −3.9528 −0.3979
2 0.0000 −0.4251 0.0000 0.0000 0.0000 10.8184 0.0000 −0.7958
3 0.0000 −0.4227 −13.4338 −4.1445 −13.4338 10.6640 3.9528 −0.3979
4 0.0189 −0.3516 10.3857 4.8514 12.4267 −0.7101 0.0000 0.0000
5 0.0000 −0.3530 0.0000 0.0000 0.0000 −0.5780 0.0000 0.0000
6 −0.0189 −0.3516 −10.3857 −4.8514 −12.4267 −0.7101 0.0000 0.0000
7 0.0231 −0.2428 4.0131 2.2300 6.5383 −0.1441 0.0000 0.0000
8 0.0000 −0.2434 0.0000 0.0000 0.0000 −0.0730 0.0000 0.0000
9 −0.0231 −0.2428 −4.0131 −2.2300 −6.5383 −0.1441 0.0000 0.0000
10 0.0244 −0.1222 2.0584 1.2624 4.2986 −0.0619 0.0000 0.0000
11 0.0000 −0.1226 0.0000 0.0000 0.0000 −0.0325 0.0000 0.0000
12 −0.0244 −0.1222 −2.0584 −1.2624 −4.2986 −0.0619 0.0000 0.0000
13 0.0242 0.0003 1.2697 0.9626 3.1253 0.2516 0.0000 0.0000
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.2782 0.0000 1.5915
15 −0.0242 0.0003 −1.2697 −0.9626 −3.1253 0.2516 0.0000 0.0000

node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz
1 0.0000 −0.5305 43.9761 0.0000 47.1592 0.0000
2 0.0000 −0.5305 0.0000 0.0000 0.0000 0.0000
3 0.0000 −0.5305 −43.9761 0.0000 −47.1592 0.0000
4 0.0227 −0.4606 8.8254 0.0000 12.0085 0.0000
5 0.0000 −0.4606 0.0000 0.0000 0.0000 0.0000
6 −0.0227 −0.4606 −8.8254 0.0000 −12.0085 0.0000
7 0.0306 −0.3243 4.4127 0.0000 7.5958 0.0000
8 0.0000 −0.3243 0.0000 0.0000 0.0000 0.0000
9 −0.0306 −0.3243 −4.4127 0.0000 −7.5958 0.0000
10 0.0330 −0.1634 1.8314 0.0000 5.0145 0.0000
11 0.0000 −0.1634 0.0000 0.0000 0.0000 0.0000
12 −0.0330 −0.1634 −1.8314 0.0000 −5.0145 0.0000
13 0.0318 0.0000 0.0000 0.0000 3.1831 0.0000
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15 −0.0318 0.0000 0.0000 0.0000 −3.1831 0.0000

Figure 7.20. Point loaded circular plate benchmark: computed results and exact solution for 4 × 2
Quad4 mesh, with Poisson ratio ν = 1/3.

(a)  4 x 2 Mesh of Quad4 Elements, ν = 1/3:

(b)  16 x 2 Mesh of Quad4 Elements, ν = 1/3:

P-loaded circ plate: disp ur  (black=exact,red=FEM)      P-loaded circ plate: stress σrr (black=exact,red=FEM)     P-loaded circ plate: stress σθθ (black=exact,red=FEM)   

P-loaded circ plate: disp ur  (black=exact,red=FEM)      P-loaded circ plate: stress σrr (black=exact,red=FEM)    P-loaded circ plate: stress σθθ (black=exact,red=FEM)   
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Figure 7.21. Point loaded circular plate benchmark: radial plots of ur , σrr and σθθ for 4×2 and 16×2
element Quad4, with Poisson ratio ν = 1/3. Plot is along the bottom plate surface z = −h/2.
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Thin plate (Kirchhoff) solution

Computed solution
node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz r−force z−force

1 0.0000 −0.5381 17.7424 0.3592 17.7424 1.9099 −1.3263 −0.2653
2 0.0000 −0.5409 0.0000 0.0000 0.0000 1.9099 0.0000 −1.0610
3 0.0000 −0.5381 −17.7424 −0.3592 −17.7424 1.9099 1.3263 −0.2653
4 0.0223 −0.4676 10.2753 0.0000 12.3574 0.9549 0.0000 0.0000
5 −0.0223 −0.4676 −10.2753 0.0000 −12.3574 0.9549 0.0000 0.0000
6 0.0308 −0.3265 3.4321 −0.0939 7.1442 0.1469 0.0000 0.0000
7 0.0000 −0.3274 0.0000 0.0000 0.0000 0.1469 0.0000 0.0000
8 −0.0308 −0.3265 −3.4321 0.0939 −7.1442 0.1469 0.0000 0.0000
9 0.0330 −0.1641 1.9422 0.0626 5.1496 0.2204 0.0000 0.0000
10 −0.0330 −0.1641 −1.9422 −0.0626 −5.1496 0.2204 0.0000 0.0000
11 0.0318 0.0002 −0.1718 −0.0462 2.9832 0.1469 0.0000 0.0000
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.1469 0.0000 1.5915
13 −0.0318 0.0002 0.1718 0.0462 −2.9832 0.1469 0.0000 0.0000

node r−disp z−disp sigma−rr sigma−zz sigma−θθ sigma−rz
1 0.0000 −0.5305 43.9761 0.0000 47.1592 0.0000
2 0.0000 −0.5305 0.0000 0.0000 0.0000 0.0000
3 0.0000 −0.5305 −43.9761 0.0000 −47.1592 0.0000
4 0.0227 −0.4606 8.8254 0.0000 12.0085 0.0000
5 −0.0227 −0.4606 −8.8254 0.0000 −12.0085 0.0000
6 0.0306 −0.3243 4.4127 0.0000 7.5958 0.0000
7 0.0000 −0.3243 0.0000 0.0000 0.0000 0.0000
8 −0.0306 −0.3243 −4.4127 0.0000 −7.5958 0.0000
9 0.0330 −0.1634 1.8314 0.0000 5.0145 0.0000
10 −0.0330 −0.1634 −1.8314 0.0000 −5.0145 0.0000
11 0.0318 0.0000 0.0000 0.0000 3.1831 0.0000
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
13 −0.0318 0.0000 0.0000 0.0000 −3.1831 0.0000

Figure 7.22. Point loaded circular plate benchmark: computed results and exact solution for 2 × 1
Quad8 mesh, with Poisson ratio ν = 1/3.

P-loaded circ plate: disp ur (black=exact,red=FEM)       P-loaded circ plate: stress σrr (black=exact,red=FEM)     P-loaded circ plate: stress σθθ (black=exact,red=FEM)   

(a)  2 x 1 Mesh of Quad8 Elements, ν = 1/3:

(b)  8 x 1 Mesh of Quad8 Elements, ν = 1/3:

P-loaded circ plate: disp ur (black=exact,red=FEM)        P-loaded circ plate: stress σrr (black=exact,red=FEM)     P-loaded circ plate: stress σθθ (black=exact,red=FEM)   
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Figure 7.23. Point loaded circular plate benchmark: radial plots of ur , σrr and σθθ for 2 × 1 and 8 × 1
Quad8 meshes, with Poisson ratio ν = 1/3. Plot is along the bottom plate surface z = −h/2.
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Homework Exercises for Chapter 7

Axisymmetric Solid Benchmark Problems

EXERCISE 7.1 [C:20] This exercise deals with the thick-tube benchmark example discussed in §13.2–5.
The script for this exercise is in Cell 12 of the Notebook Quad4SOR.nb supplied with this Chapter.

(a) Repeat the 4-element analysis using ν = 0.45 and ν = 0.499. Describe what happens to the accuracy of
displacements and stresses when compared with the exact solution.

(b) Can a more refined mesh fix the problems noted in (a)? To check, run 16 elements along the radial
direction and report if things have improved.

EXERCISE 7.2 [C:20] A concrete pile embedded in a soil half-space, as defined in Figure E7.1. This
problem is solved using a very coarse mesh in Cell 17 of the Notebook Quad4SOR.nb supplied with
this Chapter. Repeat the analysis using a more refined mesh, like that suggested in the figure. Module
GenerateGradedRingNodeCoordinates may be used to generate a graded regular mesh.

The total force applied to pile is P = 500000 lbs (this may be assumed to be uniformly distributed on the
top pile surface, or placed as a point load). Other data: pile modulus EP = 300, 000 psi, soil modulus
ES = EP/50, Poisson’s ratio for pile νP = 0.1, Poisson’s ratio for soil νS = 0.40, pile diameter d = 10 in,
pile length L = 250 in, and mesh z-length H = 1.2L . Truncate the mesh at R = 80 in. Neglect all body
forces.

Nodes on the “soil truncation boundary” should be fixed. Points on the z axis r = 0 should be on vertical
rollers except for 1.

The most interesting numerical results are: (i) the top and bottom vertical displacement of the pile, (ii) the
reaction forces at the bottom of the pile, and (iii) the normal stress σzz in the pile.

EXERCISE 7.3 [C:20] The spinning Mother Earth. Model one quadrant of the planet cross section with an
axisymmetric finite element mesh as sketched in Figure E19.3 (note that all elements are 4-node quadrilaterals).
The problem is solved in Cell 18 of the Notebook Quad4SOR.nb supplied with this Chapter, using a very coarse
mesh of only 4 elements.

Use the Kg-force/m/sec unit system for this problem. The Earth spins with angular velocity ω = 2π rad/24hrs
= (2π/86400) sec−1 about the z axis. The planet radius is R = 6370 Km = 6.37 106m. For E take 1/3 of the
rigidity of steel, or E = 7 105 Kg/cm2 = 7 109 Kg/m2 as Love (Theory of Elasticity) recommends; Poisson’s
ratio ν = 0.3 (this is my own guess), and mass density ρ = 5.52 times the water density. [Watch out for units:
the centrifugal body force ρω2r should come up in Kg/m3.] All gravitational field effects (self weight) are
ignored.

(a) Get the equatorial “bulge” and the polar “flatening” in Km, and the maximum stress in MPa.

(b) Where do the maximum normal stresses occur?
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Figure E7.1. Pile embebded in soft soil.
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