Axisymmetric Solid Benchmark Problems

TABLE OF CONTENTS

			Page				
§7.1.	Benchmar	k 1: Internally Pressurized Thick Cylinder	7–3				
	§7.1.1.	Problem Description	7–3				
	§7.1.2.	Exact Solution	7–3				
	§7.1.3.	Driver Script	7–4				
	§7.1.4.	Results For Zero Poisson Ratio	7–6				
	§7.1.5.	Results For Near Incompressible Material	7–6				
§7.2.	Benchmar	*k Example 2: Rotating Thin Disk	7–11				
	§7.2.1.	Exact Solution	7-12				
	§7.2.2.	Driver Script	7-12				
	§7.2.3.	Numerical Results	7–12				
§7.3.	Benchmark 3: Point Loaded SS Circular Plate Bending						
-	§7.3.1.	Exact Solution	7–18				
	§7.3.2.	Driver Script	7-18				
	§7.3.3.	Numerical Results	7–19				
§7.	Exercises		7–21				

This chapter presents three benchmark examples that are often used to assess the performance of FEM models for axisymmetric solid analysis.

They were previously included as part of Chapter 6, but have been split to a new Chapter on account of length.

§7.1. Benchmark 1: Internally Pressurized Thick Cylinder

The first benchmark problem is that used in the previous Chapter to illustrate driver script preparation for the QuadSOR code. It is illustrated in Figure 7.1, which reproduces Figure 6.1 for convenience. The study in the present Section covers: effect of mesh refinement in the radial direction, relative performance of 4-node versus 8-node quadrilateral elements, and influence of Poisson ratio ν when passing from $\nu = 0$ to near the incompressible limit $\nu \approx \frac{1}{2}$.

§7.1.1. Problem Description

Restating the problem: a cylindrical hollow tube of inner radius a and outer radius b is subjected to internal pressure p. The tube and its cross section are shown in Figure 7.1. The tube extends indefinitely along the z axis and is in a plane strain state along that direction. The material is isotropic with elastic modulus E and Poisson's ratio v. A "slice" of thickness d is extracted and discretized as shown in Figure 7.2 using using N_{er} quadrilateral ring elements along the radial direction r and one along the axial direction z (In that Figure, N_{er} are 4 and 2 for the 4-node and 8-node quadrilateral meshes, respectively.) Nodes move in the radial direction only, which results in the support conditions drawn in Figure 7.2(b,c).

FIGURE 7.1. Pressurized thick cylinder benchmark problem. Reproduced from Figure 6.1 for convenience.

FIGURE 7.2. Two example FEM discretizations for the pressurized thick cylinder benchmark.

§7.1.2. Exact Solution

The exact stress distribution¹ across the wall is

$$\sigma_{rr} = p \frac{a^2}{b^2 - a^2} (1 - \frac{b^2}{r^2}), \qquad \sigma_{zz} = p \frac{2a^2 \nu}{b^2 - a^2},$$

$$\sigma_{\theta\theta} = p \frac{a^2}{b^2 - a^2} (1 + \frac{b^2}{r^2}), \qquad \text{others zero.}$$
(7.1)

Note that $\sigma_{zz} = 0$ if $\nu = 0$ and that $\sigma_{rr} + \sigma_{\theta\theta}$ does not depend on *r*. Transforming this stress field to strains through $\mathbf{e} = \mathbf{E}^{-1}\boldsymbol{\sigma}$ gives the exact strain field, which can be verified to satisfy $e_{zz} = 0$. The hoop strain thus obtained is $e_{\theta\theta} = pa^2 (1 + \nu) (b^2 + r^2(1 - 2\nu))/(E(b^2 - a^2)r^2)$, which multiplied by *r* yields the exact radial displacement

$$u_r = p \frac{a^2 (1+\nu)(b^2 + r^2(1-2\nu))}{E(b^2 - a^2)r}.$$
(7.2)

§7.1.3. Driver Script

The *Mathematica* driver script listed in Figure 7.3 accepts both 4-node and 8-node quad elements. Note that geometric, constitutive and discretization properties are declared at the top to make parametrization simpler. To set the element type it is sufficient to declare etype in the second line of the script to be either "Quad4" or "Quad8". The number of elements along the radial and axial directions: N_{er} and N_{ez} , are parametrized by the values assigned to Ner and Nez, respectively. The latter is assumed to be 1 since the solution only depends on r.

¹ Taken from S. Timoshenko and J. N. Goodier, *Theory of Elasticity*, McGraw-Hill, 2nd ed., 1951, Chapter 4, for a condition of plane strain in the *z* direction. The solution is due to G. Lamé, *Leçons sur la Théorie Mathématique de l'Elasticité des Corps Solides*, Paris, Bachellier, 1852.

```
ClearAll[Em, v, th, a, b, d, p, Ner, Nez];
Em=1000.; v=0.0; etype="Quad4"; numer=True; Ner=4; Nez=1;
Kfac=1; a=4; b=10; d=2; aspect=d/(b-a); p=10;
(* Define FEM model *)
MeshCorners=N[\{a,0\}, \{b,0\}, \{b,d\}, \{a,d\}\}];
If [etype=="Quad4",
    NodeCoordinates=GenQuad4NodeCoordinates[MeshCorners,Ner,Nez];
    ElemNodes=GenQuad4ElemNodes[Ner,Nez]];
If [etype=="Quad8",
    NodeCoordinates=GenQuad8NodeCoordinates[MeshCorners,Ner,Nez];
    ElemNodes=GenQuad8ElemNodes[Ner,Nez]];
numnod=Length[NodeCoordinates]; numele=Length[ElemNodes];
ElemType=Table[etype,{numele}];
ElemMaterial=Table[N[{Em,v}], {numele}];
FreedomTags=Table[{0,1}, {numnod}];
FreedomValues=Table[{0,0}, {numnod}]; pfor=N[Kfac*p*a*d];
If [etype=="Quad4",
    FreedomValues[[1]]=FreedomValues[[2]]={pfor/2,0}];
If [etype=="Quad8",
    FreedomValues[[1]]=FreedomValues[[3]]={pfor/6,0};
    FreedomValues[[2]] ={2*pfor/3,0}];
ElemBodyForces= ElemTractionForces={}; DefaultOptions={numer};
(* Problem data print statements removed *)
Plot2DElementsAndNodes[NodeCoordinates,ElemNodes,aspect,
      "Press thick cylinder", True, True];
(* Solve problem and print results *)
{NodeDisplacements,NodeForces,NodeStresses}=RingAnalysisDriver[
    NodeCoordinates, ElemType, ElemNodes,
    ElemMaterial,ElemBodyForces,ElemTractionForces,
    FreedomTags,FreedomValues,DefaultOptions];
PrintRingAnalysisSolution[NodeDisplacements,NodeForces,
     NodeStresses, "Computed solution", {}];
{ExactNodeDisplacements,ExactNodeStresses}=
     ExactSolution[NodeCoordinates, \{a,b\}, \{Em, v, \rho\}, p,
     "PressThickCylinder", numer];
PrintRingNodeDispStresses[ExactNodeDisplacements,
    ExactNodeStresses,"Exact (Lame) solution",{}];
(* Contour plots of stress distributions *)
legend={(a+b)/2,0.75*d}; whichones={True,True,True,False};
If [v==0, whichones={True,False,True,False}];
ContourPlotStresses[NodeCoordinates,ElemNodes,NodeStresses,
  whichones, True, { }, legend, aspect ];
(* Radial plots comparing FEM vs exact solutions *)
pwhat={"ur", "\sigma rr", "\sigma zz", "\sigma \theta \theta"};
For [ip=1,ip<=Length[pwhat],ip++, what=pwhat[[ip]];</pre>
     RadialPlotFEMvsExact[etype,NodeCoordinates,NodeDisplacements,
       NodeStresses, \{a,b\}, \{Em, v, \rho\}, p, \{Ner, Nez\},
      "PressThickCylinder", what, 1, numer] ];
```

FIGURE 7.3. Driver script for pressurized thick cylinder benchmark. This one accepts both Quad4 and Quad8 elements, as well as (through mesh generation) arbitrary number of elements in the radial direction.

If the element type is "Quad4" a regular mesh is generated by modules GenQuad4NodeCoordinates and GenQuad4ElemNodes, described in the previous Chapter. If the element type is Quad8 the generation modules invoked are GenQuad8NodeCoordinates and GenQuad8ElemNodes. the element type is "Quad8". Pressure lumping to the nodes on the inner radius r = a depends on element type. The total pressure force is $p_{for} = K_{fac} p a d$, in which $K_{fac} = 1$ for QuadSOR because it uses a one-radian circumferential ring span. That value is stored in pfor. If the element type is "Quad4", the two innermost nodes 1 and 2 receive $\frac{1}{2} p_{for}$ each. If the element type is "Quad8" the three innermost nodes 1, 2 and 3 receive $\frac{1}{6} p_{for}$, $\frac{2}{3} p_{for}$ and $\frac{1}{6} p_{for}$, respectively, in accordance with consistent node force lumping.

§7.1.4. Results For Zero Poisson Ratio

The results presented here were computed for a = 4, b = 10, d = 2, p = 10, E = 1000, two Poisson ratio values, two element types, and two radial discretizations for each type.

The script of Figure 7.3 specifically sets etype="Quad4", Ner=4 and $\nu = 0$. The mesh is actually that pictured in Figure 7.2(b). Computed and exact nodal values are tabulated in Figure 7.4. Radial displacements u_r , radial stresses σ_{rr} and hoop stresses $\sigma_{\theta\theta}$ are graphically compared over the wall $a \leq r \leq b$ with the exact solution in Figure 7.5(a).

As can be seen u_r and $\sigma_{\theta\theta}$ are satisfactorily predicted. The hole-edge radial stress, however, is significantly underestimated: $\sigma_{rr} = -6.604$ compared to the exact $\sigma_{rr} = -p = -10$. This is a consequence of the impossibility of doing interelement stress averaging at that high-stress-gradient edge. For this low-order model the variation of σ_{rr} in the *r* direction is limited to be constant within the element. Thus $\sigma_{rr} = -6.604$ is more representative of the stress at the center of element (1). The σ_{rr} agreement at other nodes is reasonable given the coarseness of the mesh. The higher accuracy of the hoop stress $\sigma_{\theta\theta}$ is incidental, reflecting an idiosyncracy of axisymmetric solids: the hoop strain $\epsilon_{\theta\theta} = u_r/r$ is not obtained through displacement differentiation. It thus attains the same accuracy as u_r . And for zero v, $\sigma_{\theta\theta} = E \epsilon_{\theta\theta} = E u_r/r$.

Increasing Ner to 16 gives a solution that is compared with the exact one in Figure 7.5(b). Both u_r and $\sigma_{\theta\theta}$ are correct to at least 3 places. The only visible flaw is the discrepancy of σ_{rr} at the hole boundary, where it gives $\sigma_{rr} = -8.965$ instead of -p = -10. Again this is a consequence of lack of interelement averaging. Away from the hole σ_{rr} agrees with the exact solution to plot accuracy.

The analysis is then redone with the 8-node quadrilateral Quad8 with reduced (2×2) integration. To make a fair comparison with Quad4, the Quad8 meshes contain half the elements: 2 and 8, respectively, which results in a similar number of nodes.

The results of running Quad8 with Ner=2 are tabulated in Figure 7.6. Radial displacements u_r , radial stresses σ_{rr} and hoop stresses $\sigma_{\theta\theta}$ are graphically compared over $a \le r \le b$ with the exact solution in Figure 7.7(a). This element is supposed to be nodally exact for one-dimensional problems, and indeed the computed and exact u_r may be verified to agree numerically to 15 places at all nodes. The hoop stress should be also nodally exact since $\sigma_{\theta\theta} = E u_r/r$, but the extrapolation from Gauss points introduces discrepancies. The computed radial stress σ_{rr} is as good as can be expected from a linear variation over the element.

Running Quad8 with Ner=8 give the results plotted in Figure 7.7(b). Again the displacements are nodally exact. Both σ_{rr} and $\sigma_{\theta\theta}$ agree everywhere with the exact solution at plot accuracy.

§7.1 BENCHMARK 1: INTERNALLY PRESSURIZED THICK CYLINDER

Comput	ed solutio	n						
node	r-disp	z-disp	sigma-rr	sigma-zz	sigma-00	sigma-rz	r-force	z-force
2	0.0546	0.0000	-6.6040	0.0000	13.3193 13.3193	0.0000	40.0000	0.0000
3	0.0447	0.0000	-4.7954	0.0000	7.9555	0.0000	0.0000	0.0000
4	0.0447	0.0000	-4.7954 -2.1293	0.0000	7.9555	0.0000	0.0000	0.0000
6	0.0402	0.0000	-2.1293	0.0000	5.6858	0.0000	0.0000	0.0000
7	0.0383	0.0000	-0.7984	0.0000	4.4821	0.0000	0.0000	0.0000
9	0.0379	0.0000	-0.3250	0.0000	3.7674	0.0000	0.0000	0.0000
10	0.0379	0.0000	-0.3250	0.0000	3.7674	0.0000	0.0000	0.0000
Exact	(Lame) sol	ution						
node	r-disp	z-disp	sigma-rr	sigma-zz	sigma-00	sigma-rz		
⊥ 2	0.0552	0.0000	-10.0000	0.0000	13.8095	0.0000		
3	0.0451	0.0000	-4.3920	0.0000	8.2015	0.0000		
4	0.0451	0.0000	-4.3920	0.0000	8.2015	0.0000		
6	0.0405	0.0000	-1.9825	0.0000	5.7920	0.0000		
7	0.0386	0.0000	-0.7316	0.0000	4.5411	0.0000		
9	0.0381	0.0000	0.0000	0.0000	3.8095	0.0000		
10	0.0381	0.0000	0.0000	0.0000	3.8095	0.0000		

FIGURE 7.4. Pressurized thick cylinder benchmark: computed and exact nodal solution for 4-element Quad4 model with Poisson ratio $\nu = 0$. The mesh is that shown in Figure 7.2(b).

(a) 4×1 Mesh of Quad4 Elements, v = 0:

(b) 16 x 1 Mesh of Quad4 Elements, v = 0:

FIGURE 7.5. Pressurized thick cylinder benchmark: r plots of computed versus exact u_r , σ_{rr} and $\sigma_{\theta\theta}$ for Quad4 meshes with $\nu = 0$: (a) 4-element mesh, (b) 16-element mesh.

§7.1.5. Results For Near Incompressible Material

If Poisson ratio is increased over zero, Quad4 results gradually lose accuracy if the number of elements is kept the same. In the limit $\nu \rightarrow \frac{1}{2}$, the material approaches incompressibility, and the computed solution deterioration accelerates. This phenomenon is known as *volumetric locking* in the FEM literature. To illustrate that degradation, the 4-element Quad4 mesh is run with $\nu = 0.499$, which exemplifies near-incompressible behavior.²

² Setting $\nu = \frac{1}{2}$ exactly makes the elasticity matrix **E**, as well as **K**, "blow up" and no solution would be obtained.

Chapter 7: AXISYMMETRIC SOLID BENCHMARK PROBLEMS

ed solutio	n						
r-disp 0 0552	z-disp	sigma-rr -8 6085	sigma-zz	sigma-00 12 4181	sigma-rz 0 0000	r-force	z-force
0.0552	0.0000	-8.6085	0.0000	12.4181	0.0000	53.3333	0.0000
0.0552	0.0000	-8.6085	0.0000	12.4181	0.0000	13.3333	0.0000
0.0451	0.0000	-4.8980	0.0000	8.7075	0.0000	0.0000	0.0000
0.0405	0.0000	-1.4820 -1.4820	0.0000	5.2916	0.0000	0.0000	0.0000
0.0405	0.0000	-1.4820	0.0000	5.2916	0.0000	0.0000	0.0000
0.0386	0.0000	-0.8163	0.0000	4.6259	0.0000	0.0000	0.0000
0.0381	0.0000	0.1441	0.0000	3.6655	0.0000	0.0000	0.0000
0.0381	0.0000 0.0000	$0.1441 \\ 0.1441$	0.0000	3.6655	0.0000	0.0000	0.0000
(Lame) sol	ution						
r-disp	z-disp	sigma-rr	sigma-zz	sigma-θθ	sigma-rz		
0.0552	0.0000	-10.0000	0.0000	13.8095	0.0000		
0.0552 0.0552	0.0000	-10.0000 -10.0000	0.0000	13.8095 13.8095	0.0000		
0.0451	0.0000	-4.3920	0.0000	8.2015	0.0000		
0.0451 0.0405	0.0000	-4.3920 -1.9825	0.0000	8.2015	0.0000		
0.0405	0.0000	-1.9825	0.0000	5.7920	0.0000		
0.0405 0.0386	0.0000	-1.9825 -0.7316	0.0000	5.7920	0.0000		
0.0386	0.0000	-0.7316	0.0000	4.5411	0.0000		
0.0381	0.0000	0.0000	0.0000	3.8095	0.0000		
0.0381	0.0000	0.0000	0.0000	3.8095	0.0000		
	ed solutio r-disp 0.0552 0.0552 0.0552 0.0451 0.0405 0.0405 0.0405 0.0405 0.0386 0.0381 0.0381 (Lame) sol r-disp 0.0552 0.0552 0.0552 0.0451 0.0405 0.0452 0.0552 0.0552 0.0552 0.0552 0.0552 0.0451 0.0381 0.0381 0.0381 0.0381 0.0381	ed solution r-disp z-disp 0.0552 0.0000 0.0552 0.0000 0.0552 0.0000 0.0552 0.0000 0.0451 0.0000 0.0451 0.0000 0.0405 0.0000 0.0405 0.0000 0.0386 0.0000 0.0386 0.0000 0.0381 0.0000 0.0381 0.0000 0.0381 0.0000 0.0552 0.0000 0.0552 0.0000 0.0552 0.0000 0.0552 0.0000 0.0405 0.0000 0.0405 0.0000 0.0405 0.0000 0.0405 0.0000 0.0405 0.0000 0.0405 0.0000 0.0386 0.0000 0.0386 0.0000 0.0386 0.0000 0.0386 0.0000 0.0386 0.0000 0.0381 0.0000 0.0381 0.0000 0.0381 0.0000 0.0381 0.0000	ed solution r-disp z-disp sigma-rr 0.0552 0.0000 -8.6085 0.0552 0.0000 -8.6085 0.0552 0.0000 -8.6085 0.0451 0.0000 -4.8980 0.0451 0.0000 -4.8980 0.0405 0.0000 -1.4820 0.0405 0.0000 -1.4820 0.0405 0.0000 -1.4820 0.0386 0.0000 -0.8163 0.0386 0.0000 -0.8163 0.0381 0.0000 0.1441 0.0381 0.0000 0.1441 0.0381 0.0000 -1.4820 0.0552 0.0000 -10.0000 0.0552 0.0000 -10.0000 0.0552 0.0000 -10.0000 0.0552 0.0000 -10.0000 0.0451 0.0000 -4.3920 0.0405 0.0000 -1.9825 0.0405 0.0000 -1.9825 0.0405 0.0000 -1.9825 0.0386 0.0000 -0.7316 0.0381 0.0000 0.7316 0.0381 0.0000 0.0000	ed solution r-disp z-disp sigma-rr sigma-zz 0.0552 0.0000 -8.6085 0.0000 0.0552 0.0000 -8.6085 0.0000 0.0552 0.0000 -8.6085 0.0000 0.0451 0.0000 -4.8980 0.0000 0.0451 0.0000 -4.8980 0.0000 0.0405 0.0000 -1.4820 0.0000 0.0405 0.0000 -1.4820 0.0000 0.0386 0.0000 -0.8163 0.0000 0.0386 0.0000 -0.8163 0.0000 0.0381 0.0000 0.1441 0.0000 0.0381 0.0000 0.1441 0.0000 0.0381 0.0000 0.1441 0.0000 0.0552 0.0000 -10.0000 0.0000 0.0552 0.0000 -10.0000 0.0000 0.0405 0.0000 -1.4320 0.0000 0.0381 0.0000 0.1441 0.0000 0.0381 0.0000 0.1441 0.0000 0.0552 0.0000 -10.0000 0.0000 0.0451 0.0000 -10.8163 0.0000 0.0451 0.0000 -10.8163 0.0000 0.0451 0.0000 -10.8163 0.0000 0.0451 0.0000 -10.825 0.0000 0.0405 0.0000 -1.9825 0.0000 0.0405 0.0000 -1.9825 0.0000 0.0405 0.0000 -1.9825 0.0000 0.0386 0.0000 -0.7316 0.0000 0.0381 0.0000 0.0000 0.0000 0.0381 0.0000 0.0000 0.0000	ed solution r-disp z-disp sigma-rr sigma-zz sigma- $\theta\theta$ 0.0552 0.0000 -8.6085 0.0000 12.4181 0.0552 0.0000 -8.6085 0.0000 12.4181 0.0552 0.0000 -4.8085 0.0000 12.4181 0.0451 0.0000 -4.8980 0.0000 8.7075 0.0451 0.0000 -4.8980 0.0000 8.7075 0.0405 0.0000 -1.4820 0.0000 5.2916 0.0405 0.0000 -1.4820 0.0000 5.2916 0.0386 0.0000 -0.8163 0.0000 4.6259 0.0386 0.0000 -0.8163 0.0000 4.6259 0.0381 0.0000 0.1441 0.0000 3.6655 0.0381 0.0000 0.1441 0.0000 3.6655 0.0381 0.0000 -10.4141 0.0000 3.6655 0.0381 0.0000 -10.4141 0.0000 3.6655 0.0381 0.0000 -10.441 0.0000 3.6655 0.0381 0.0000 -1.4820 0.0000 13.8095 0.0552 0.0000 -10.0000 0.0000 13.8095 0.0552 0.0000 -10.855 0.0000 13.8095 0.0451 0.0000 -4.3920 0.0000 8.2015 0.0451 0.0000 -4.3920 0.0000 8.2015 0.0451 0.0000 -1.9825 0.0000 5.7920 0.0405 0.0000 -1.9825 0.0000 5.7920 0.0405 0.0000 -1.9825 0.0000 5.7920 0.0405 0.0000 -0.7316 0.0000 4.5411 0.0386 0.0000 -0.7316 0.0000 4.5411 0.0381 0.0000 0.0000 0.0000 3.8095 0.0381 0.0000 0.0000 0.0000 0.0000 3.8095 0.0381 0.0000 0.0000 0.0000 0.0000 3.8095 0.0381 0.0000 0.0000 0.0000 0.0000 0.0000 3.8095 0.0381 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	ed solution $\begin{array}{c} r-disp z-disp sigma-rr sigma-zz sigma-\theta\theta sigma-rz \\ 0.0552 0.0000 -8.6085 0.0000 12.4181 0.0000 \\ 0.0552 0.0000 -8.6085 0.0000 12.4181 0.0000 \\ 0.0552 0.0000 -4.8980 0.0000 8.7075 0.0000 \\ 0.0451 0.0000 -4.8980 0.0000 8.7075 0.0000 \\ 0.0451 0.0000 -1.4820 0.0000 8.7075 0.0000 \\ 0.0405 0.0000 -1.4820 0.0000 5.2916 0.0000 \\ 0.0405 0.0000 -1.4820 0.0000 5.2916 0.0000 \\ 0.0386 0.0000 -0.8163 0.0000 4.6259 0.0000 \\ 0.0386 0.0000 -0.8163 0.0000 4.6259 0.0000 \\ 0.0381 0.0000 0.1441 0.0000 3.6655 0.0000 \\ 0.0381 0.0000 0.1441 0.0000 3.6655 0.0000 \\ 0.0381 0.0000 0.1441 0.0000 3.6655 0.0000 \\ 0.0552 0.0000 -10.0000 0.0000 13.8095 0.0000 \\ 0.0552 0.0000 -10.8000 0.0000 13.8095 0.0000 \\ 0.0552 0.0000 -10.825 0.0000 8.2015 0.0000 \\ 0.0405 0.0000 -1.43920 0.0000 8.2015 0.0000 \\ 0.0405 0.0000 -1.9825 0.0000 8.2015 0.0000 \\ 0.0405 0.0000 -1.9825 0.0000 8.2015 0.0000 \\ 0.0405 0.0000 -1.9825 0.0000 8.2015 0.0000 \\ 0.0405 0.0000 -1.9825 0.0000 8.2015 0.0000 \\ 0.0405 0.0000 -1.9825 0.0000 8.2015 0.0000 \\ 0.0405 0.0000 -1.9825 0.0000 8.2015 0.0000 \\ 0.0405 0.0000 -1.9825 0.0000 8.2015 0.0000 \\ 0.0405 0.0000 -1.9825 0.0000 5.7920 0.0000 \\ 0.0386 0.0000 -0.7316 0.0000 4.5411 0.0000 \\ 0.0381 0.0000 0.0000 -0.7316 0.0000 4.5411 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 5.7920 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 5.7920 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 5.7920 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 5.7920 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 5.7920 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 5.7920 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 5.7920 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 5.7920 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 5.7920 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 5.0000 5.7920 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000 \\ 0.0381 0.0000 0.0000 0.0000 0.0000 3.8095 0.00000 \\ 0.0381 0.0000 0.0000 0.0000 0.$	ed solution r-disp z-disp sigma-rr sigma-zz sigma- $\theta\theta$ sigma-rz r-force 0.0552 0.0000 -8.6085 0.0000 12.4181 0.0000 13.3333 0.0552 0.0000 -8.6085 0.0000 12.4181 0.0000 53.3333 0.0552 0.0000 -4.8980 0.0000 8.7075 0.0000 0.0000 0.0451 0.0000 -4.8980 0.0000 8.7075 0.0000 0.0000 0.0405 0.0000 -1.4820 0.0000 5.2916 0.0000 0.0000 0.0405 0.0000 -1.4820 0.0000 5.2916 0.0000 0.0000 0.0405 0.0000 -1.4820 0.0000 5.2916 0.0000 0.0000 0.0386 0.0000 -0.8163 0.0000 4.6259 0.0000 0.0000 0.0386 0.0000 -0.8163 0.0000 4.6259 0.0000 0.0000 0.0381 0.0000 0.1441 0.0000 3.6655 0.0000 0.0000 0.0381 0.0000 0.1441 0.0000 3.6655 0.0000 0.0000 0.0381 0.0000 0.1441 0.0000 3.6655 0.0000 0.0000 0.0552 0.0000 -10.0000 0.0000 13.8095 0.0000 0.0552 0.0000 -1.43920 0.0000 13.8095 0.0000 0.0552 0.0000 -1.43920 0.0000 13.8095 0.0000 0.0000 0.0451 0.0000 0.1441 0.0000 3.6655 0.0000 0.0000 0.0381 0.0000 0.1441 0.0000 3.6655 0.0000 0.0000 0.0381 0.0000 0.1441 0.0000 3.6655 0.0000 0.0000 0.0552 0.0000 -10.0000 0.0000 13.8095 0.0000 0.0000 0.0552 0.0000 -10.0000 0.0000 13.8095 0.0000 0.0000 0.0451 0.0000 -1.9825 0.0000 5.7920 0.0000 0.0405 0.0000 -0.7316 0.0000 4.5411 0.0000 0.0381 0.0000 0.07316 0.0000 4.5411 0.0000 0.0381 0.0000 0.0000 0.0000 3.8095 0.0000

FIGURE 7.6. Pressurized thick cylinder benchmark: computed and exact nodal solution for 2-element Quad8 model with Poisson ratio $\nu = 0$. The mesh is that shown in Figure 7.2(c).

FIGURE 7.7. Pressurized thick cylinder benchmark: r plots of computed versus exact u_r , σ_{rr} and $\sigma_{\theta\theta}$ for Quad8 meshes with $\nu = 0$: (a) 2-element mesh, (b) 8-element mesh.

Computed and exact nodal values are tabulated in Figure 7.8. Radial displacements u_r , radial stresses σ_{rr} and hoop stresses $\sigma_{\theta\theta}$ are graphically compared over $a \le r \le b$ with the exact solution in Figure 7.9(a). Serious deficiencies can be observed. The radial displacement u_r has the right

§7.1 BENCHMARK 1: INTERNALLY PRESSURIZED THICK CYLINDER

Comput	ed solutio	n						
node 1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} r-disp\\ 0.0170\\ 0.0170\\ 0.0124\\ 0.0124\\ 0.0097\\ 0.0097\\ 0.0080\\ 0.0080\\ 0.0088\\ 0.0068\\ 0.0068\end{array}$	z-disp 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	sigma-rr 174.2420 174.2420 -38.6784 -38.6784 -44.2501 -14.2501 -6.2986 -20.6648 -20.6648	sigma-zz 176.2855 176.2850 -37.0706 -37.0706 -13.2835 -13.2835 -5.6522 -20.1322 -20.1322	z sigma-00 179.0340 179.0340 5 -35.6114 5 -35.6114 5 -12.3703 5 -12.3703 2 -5.0285 2 -5.0285 3 -19.6805	sigma-rz 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	r-force 40.0000 40.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	z-force -207.7300 207.7300 55.3264 -55.3264 21.8783 -21.8783 7.4675 -7.4675 43.2181
Exact	(Lame) so	lution						
node 1 3 4 5 6 7 8 9 10	$\begin{array}{c} r-disp\\ 0.0714\\ 0.0714\\ 0.0519\\ 0.0519\\ 0.0408\\ 0.0408\\ 0.0336\\ 0.0336\\ 0.0286\\ 0.0286\end{array}$	z-disp 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	sigma-rr -10.0000 -10.0000 -4.3920 -4.3920 -1.9825 -0.7316 -0.7316 0.0000 0.0000	sigma-zz 1.9010 1.9010 1.9010 1.9010 1.9010 1.9010 1.9010 1.9010 1.9010	sigma-00 s 13.8095 13.8095 8.2015 8.2015 5.7920 4.5411 4.5411 3.8095 3.8095	igma-rz 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		

FIGURE 7.8. Pressurized thick cylinder benchmark: computed and exact nodal solution for 4-element Quad4 mesh with Poisson ratio $\nu = 0.499$. The mesh is that shown in Figure 7.2(b).

(a) 4×1 Mesh of Quad4 Elements, v = 0.499:

FIGURE 7.9. Pressurized thick cylinder benchmark: r plots of computed versus exact u_r , σ_{rr} and $\sigma_{\theta\theta}$ for Quad4 meshes with $\nu = 0.499$: (a) 4-element mesh, (b) 16-element mesh.

profile but is only about 20% of the correct values; for example at r = a the computed value is 0.0170 versus 0.0714. All stress components violently oscillate as one approaches the inner boundary, and the values taken there are nonsensical. For example $\sigma_{rr} \approx 174$ at r = a whereas it should be -p = -10, so it even has the wrong sign.

The number of elements is then increased to 16. Results are compared with the exact solution in

Chapter 7: AXISYMMETRIC SOLID BENCHMARK PROBLEMS

Comput	Computed solution								
node 1	r-disp 0.0714	z-disp 0.0000	sigma-rr -8.6085	sigma-zz 1.9010	sigma-00 12.4181	sigma-rz 0.0000	r-force 13.3333	z-force -3.8019	
2	0.0714 0.0714	0.0000	-8.6085	1.9010	12.4181	0.0000	53.3333	0.0000	
4	0.0519	0.0000	-4.8980	1.9010	8.7075	0.0000	0.0000	-20.9105	
5	0.0519 0.0408	0.0000	-4.8980 -1.4820	1.9010	8.7075	0.0000	0.0000	20.9105 -13.3067	
7	0.0408	0.0000	-1.4820	1.9010	5.2916	0.0000	0.0000	0.0000	
8	0.0408 0.0336	0.0000	-1.4820 -0.8163	1.9010	5.2916 4.6259	0.0000	0.0000	-32.3067	
10	0.0336	0.0000	-0.8163	1.9010	4.6259	0.0000	0.0000	32.3162	
12	0.0286	0.0000	0.1441	1.9010	3.6655	0.0000	0.0000	0.0000	
13	0.0286	0.0000	0.1441	1.9010	3.6655	0.0000	0.0000	9.5048	
Exact	(Lame) sol	ution							
node 1	r-disp	z-disp	sigma-rr _10_0000	sigma-zz	sigma-00	sigma-rz			
2	0.0714	0.0000	-10.0000	1.9010	13.8095	0.0000			
3	$0.0714 \\ 0.0519$	0.0000 0.0000	-10.0000 -4.3920	1.9010 1.9010	13.8095	0.0000			
5	0.0519	0.0000	-4.3920	1.9010	8.2015	0.0000			
6 7	0.0408	0.0000	-1.9825 -1.9825	1.9010	5.7920	0.0000			
8	0.0408	0.0000	-1.9825	1.9010	5.7920	0.0000			
10	0.0336	0.0000	-0.7316	1.9010	4.5411	0.0000			
11 12	0.0286	0.0000	0.0000	1.9010	3.8095	0.0000			
13	0.0286	0.0000	0.0000	1.9010	3.8095	0.0000			

FIGURE 7.10. Pressurized thick cylinder benchmark: computed and exact nodal solution for 2-element Quad8 mesh with Poisson ratio $\nu = 0.499$. The mesh is that shown in Figure 7.2(b).

(a) $2 \ge 1$ Mesh of Quad8 Elements, v = 0.499:

FIGURE 7.11. Pressurized thick cylinder benchmark: r plots of computed versus exact u_r , σ_{rr} and $\sigma_{\theta\theta}$ for Quad8 meshes with $\nu = 0.499$: (a) 2-element mesh, (b) 8-element mesh.

Figure 7.9(b). The displacements u_r are more reasonable although still visibly off. The violent stress oscillation moves closer to the inner boundary, and results there are even worse than with the 4-element mesh. A minor stress oscillation can be observed at the outer boundary.

FIGURE 7.12. Rotating thin disk benchmark problem.

Changing the FEM model to Quad8 with reduced integration makes a big difference. For a 2element mesh like that shown in Figure 7.2(c), computed and exact nodal values are tabulated in Radial displacements u_r , radial stresses σ_{rr} and hoop stresses $\sigma_{\theta\theta}$ are graphically compared over $a \leq r \leq b$ with the exact solution in Figure 7.11(a). As can be seen the model retains nodal exactness for displacements. Neither volumetric locking nor stress oscillations are observed, and the stresses are well predicted everywhere.

The number of elements is then increased to 8. Results are compared with the exact solution in Figure 7.11(b). The agreement with the exact solution is excellent.

In summary, the Quad4 model is useless for near-incompressible material in this benchmark and, in general, when modeling bulky axisymmetric solids.³. On the other hand, the rediced integration Quad8 can be strongly recommended for those problems.

Remark 7.1. If Quad8 is processed by a 3×3 integration Gauss rule, which represents full integration, volumetric locking reappears. So going from Quad4 to Quad8 is not sufficient: the integration rule makes a significant difference for near-incompressible behavior.

§7.2. Benchmark Example 2: Rotating Thin Disk

The second benchmark problem is a hollow, thin circular disk of thickness h, inner radius a and outer radius b, which spins about the z axis with constant angular frequency ω . The material is isotropic with elastic modulus E and Poisson's ratio v and mass density ρ . The r axis is placed in the disk midplane. See Figure 7.12(a,b).

³ The effect of volumetric locking is not so pronounced in the other two benchmarks because the plane strain condition is replaced by one of plane stress.

The FEM discretizations pictured in Figure 7.12(c,d) mimic those used in the pressurized thick cylinder benchmark, as shown in Figure 7.2(b,c). The number of elements in the radial direction is 4 and 16 for Quad4 and 2 and 8 for Quad8, respectively. Only one element is used in the axial direction. Nodes are allowed to move radially. Unlike the previous benchmark, however, movement in the axial (z) direction is permitted to allow for disk thickness contraction due to Poisson ratio. This motion is accomodated by constraining nodes in one of the constant-z surfaces to be on rollers as shown in Figure 7.12(c,d). All other nodes are left free. The only load is a centrifugal body force acting along $r: b_r = \rho \omega^2 r$ while $b_z = 0$.

§7.2.1. Exact Solution

The exact stress distribution for a condition of plane stress in the z direction is 4

$$\sigma_{rr} = \rho \,\omega^2 \, r \, \frac{3+\nu}{8} \left(b^2 + a^2 - \frac{a^2 \, b^2}{r^2} - r^2 \right),$$

$$\sigma_{\theta\theta} = \rho \,\omega^2 \, r \, \frac{3+\nu}{8} \left(b^2 + a^2 + \frac{a^2 \, b^2}{r^2} - \frac{(1+3\nu)r^2}{(3+\nu)} \right),$$
(7.3)

others zero. Recovering strains from (7.3) and integrating yields the displacements

$$u_{r} = \rho \,\omega^{2} \,\frac{a^{2}(3+\nu) \left(r^{2}(1-\nu)+b^{2}(1+\nu)\right)+r^{2}(1-\nu) \left(b^{2}(3+\nu)-r^{2}(1+\nu)\right)}{8 \, E \, r},$$

$$u_{z} = \rho \,\omega^{2} \, z \,\nu \,\frac{(1-\nu-2\nu^{2}) \left(2r^{2}(1+\nu)-a^{2}(3+\nu)-b^{2}(3+\nu)\right)}{4 E \, (1+3\nu)}.$$
(7.4)

Notice that $u_z = 0$ at z = 0, which removes the axial rigid body motion. If v = 0, $u_z = 0$ as may be expected, whereas if $v = \frac{1}{2}$, $u_z = \frac{1}{2}\rho \omega^2 z$.

§7.2.2. Driver Script

The *Mathematica* driver script listed in Figure 7.13 accepts both 4-node and 8-node quad elements. Note that geometric, constitutive and discretization properties are declared at the top to make parametrization simpler. To set the element type it is sufficient to declare etype in the second line of the script to be either "Quad4" or "Quad8". The number of elements along the radial and axial directions: N_{er} and N_{ez} , are parametrized by the values assigned to Ner and Nez, respectively. The latter is assumed to be 1.

If the element type is "Quad4" a regular mesh is generated by modules GenQuad4NodeCoordinates and GenQuad4ElemNodes, described in the previous Chapter. If the element type is Quad8 the generation modules invoked are GenQuad8NodeCoordinates and GenQuad8ElemNodes. the element type is "Quad8". Pressure lumping to the nodes on the inner radius r = a depends on element type. The body force field is specified at the 4 element corner nodes, regardless of whether the element type is Quad4 or Quad8.

⁴ Taken from S. Timoshenko and J. N. Goodier, *Theory of Elasticity*, McGraw-Hill, 2nd ed., 1951, Chapter 4. If $a \rightarrow 0$ the solution has a removable singularity at r = 0.

```
ClearAll[Em, v, a, b, h, Kfac, \rho, Ner, Nez, numer];
Em=1000.; v=N[1/3]; Ner=4; Nez=1; etype="Quad4";
Kfac=1; a=4; b=10; h=1; aspect=h/(b-a); ρ=3.0; ω=0.5;
numer=True;
(* Define FEM model *)
MeshCorners=N[\{\{a,0\},\{b,0\},\{b,h\},\{a,h\}\}];
If [etype=="Quad4",
    NodeCoordinates=GenQuad4NodeCoordinates[MeshCorners,Ner,Nez];
    ElemNodes= GenQuad4ElemNodes[Ner,Nez]];
If [etype=="Quad8",
    NodeCoordinates=GenQuad8NodeCoordinates[MeshCorners,Ner,Nez];
    ElemNodes= GenQuad8ElemNodes[Ner,Nez]];
numnod=Length[NodeCoordinates]; numele=Length[ElemNodes];
ElemType=
                Table[etype, {numele}];
ElemMaterial= Table[{Em,v}, {numele}];
ElemBodyForces=Table[{0,0}, {numele}];
For [e=1,e<=numele,e++, enl=ElemNodes[[e]];</pre>
     ncoor=Table[NodeCoordinates[[enl[[i]]]],{i,4}];
     \{\{r1, z1\}, \{r2, z2\}, \{r3, z3\}, \{r4, z4\}\}=ncoor;
     ElemBodyForces[[e]]=\rho* ^2*{{r1,0}, {r2,0}, {r3,0}, {r4,0}}];
FreedomTags=FreedomValues=Table[{0,0}, {numnod}];
If [etype=="Quad4",
    For [n=1,n<=numnod-Nez,n=n+Nez+1, FreedomTags[[n]]={0,1}]];</pre>
If [etype=="Quad8",
    For [n=1,n<=numnod-2*Nez,n=n+3*Nez+2, FreedomTags[[n+1]]={0,1}];</pre>
ElemTractionForces={}; DefaultOptions={True};
(* Model definition print statements removed to shorten script *)
Plot2DElementsAndNodes[NodeCoordinates,ElemNodes,aspect,
     "Rotating disk mesh", True, True];
(* Solve problem and print results *)
{NodeDisplacements,NodeForces,NodeStresses}=RingAnalysisDriver[
    NodeCoordinates, ElemType, ElemNodes,
    ElemMaterial,ElemBodyForces,ElemTractionForces,
    FreedomTags,FreedomValues,DefaultOptions];
PrintRingAnalysisSolution[NodeDisplacements, NodeForces,
    NodeStresses, "Computed solution", {}];
{ExactNodeDisplacements,ExactNodeStresses}=
    ExactSolution[NodeCoordinates, \{a,b,h\}, \{Em, v, \rho \mid ,
     "RotatingThinDisk", numer];
PrintRingNodeDispStresses[ExactNodeDisplacements,
    ExactNodeStresses,"Exact solution",{}];
(* Contour plots of stress distributions *)
legend={(a+b)/2,0.75*h}; whichones={True,False,True,False};
ContourPlotStresses[NodeCoordinates,ElemNodes,NodeStresses,
  whichones, True, {}, legend, aspect];
(* Radial plots comparing FEM vs exact solutions *)
pwhat=\{"ur", "\sigma rr", "\sigma zz", "\sigma \theta \theta"\};
For [ip=1,ip<=Length[pwhat],ip++, what=pwhat[[ip]];</pre>
     RadialPlotFEMvsExact[etype,NodeCoordinates,NodeDisplacements,
       NodeStresses, \{a, b, h\}, \{Em, v, \rho\}, |, \{Ner, Nez\},
        "RotatingThinDisk", what, 0, numer] ];
```

FIGURE 7.13. Script for rotating disk benchmark problem.

Chapter 7: AXISYMMETRIC SOLID BENCHMARK PROBLEMS

Computed solution									
node	r-disp	z-disp	sigma-rr	sigma-zz	sigma-00	sigma-rz	r-force	z-force	
1	0.2507	0.0000	12.2903	2.3994	67.8220	-0.7835	5./305	-0.5185	
2	0.2547	-0.0243	7 7005	2.3930	45 2527	0.7073	17 2266	1 2022	
4	0.2387	-0 0183	8 1077	-0.5589	45 2458	0.5598	17 2266	0 0000	
5	0.2354	0.0000	9,2003	-0.6720	36,1805	-0.4128	27,7734	-1.3919	
6	0.2343	-0.0158	9.1420	-0.7594	35.9764	0.4104	27.7734	0.0000	
7	0.2322	0.0000	6.1607	0.0342	29.2155	-0.4599	40.8516	0.6446	
8	0.2309	-0.0118	6.0606	-0.0697	29.0039	0.4653	40.8516	0.0000	
9	0.2246	0.0000	2.9120	0.3871	23.4411	-0.4071	25.4180	-0.1175	
10	0.2235	-0.0084	2.9721	0.3768	23.3500	0.4331	25.4180	0.0000	
		, -							
Exact	(plane st	ress) solu	ution						
node	r-disp	z-disp	sigma-rr	sigma-zz	sigma-00	sigma-rz			
1	0.2580	0.0000	0.0000	0.0000	64.5000	0.0000			
2	0.2580	-0.0048	0.0000	0.0000	64.5000	0.0000			
3	0.2403	0.0000	10.2079	0.0000	4/.10/1	0.0000			
5	0.2403	0.0043	10.2079	0.0000	37 2666	0.0000			
6	0.2358	-0.0036	10.7334	0.0000	37.2666	0.0000			
7	0.2327	0.0000	6.7515	0.0000	29.6235	0.0000			
8	0.2327	-0.0027	6.7515	0.0000	29.6235	0.0000			
9	0.2250	0.0000	0.0000	0.0000	22.5000	0.0000			
10	0.2250	-0.0017	0.0000	0.0000	22.5000	0.0000			

FIGURE 7.14. Rotating disk benchmark: computed results and exact solution for 4-element Quad4 mesh, with Poisson ratio $\nu = 1/3$.

FIGURE 7.15. Rotating disk benchmark: radial plots of u_r , σ_{rr} and $\sigma_{\theta\theta}$ for 4-element and 16-element Quad4, with Poisson ratio $\nu = 1/3$.

§7.2.3. Numerical Results

The results presented here were computed for a = 4, b = 10, h = 1, p = 10, E = 1000, v = 1/3, two element types, and two radial discretizations for each type.

The script of Figure 7.13 specifically sets etype="Quad4", Ner=4 and $\nu = 1/3$. The mesh is actually that pictured in Figure 7.12(c). Computed and exact nodal values are tabulated in

<i>.</i> .								
Comput	ed soluti	on						
node 1	r-disp 0.2577	z-disp 0.0108	sigma-rr 4.2728	sigma-zz 0.0000	sigma-00 61.2000	sigma-rz 0.0000	r-force -6.8437	z-force 0.0000
2	0.2579	-0.0000	4.2/28	0.0000	61.2000	0.0000	19.1250 -6 8437	0.0000
4	0.2401	0.0096	8.7239	0.0000	48.2944	0.0000	23.2500	0.0000
5	0.2401	-0.0096	8.7239	0.0000	48.2944	0.0000	23.2500	0.0000
6 7	0.2356	0.0080	12.5046	0.0000	36.2225	0.0000	-20.0625	0.0000
8	0.2356	-0.0080	12.5046	0.0000	36.2225	0.0000	-20.0625	0.0000
9	0.2324	0.0061	6.3024	0.0000	29.7056	0.0000	54.7500	0.0000
10	0.2324	-0.0061	6.3024	0.0000	29.7056	0.0000	54.7500	0.0000
12	0.2247	0.00007	0.7706	0.0000	22.3550	0.0000	61,1250	0.0000
13	0.2247	-0.0037	0.7706	0.0000	22.3550	0.0000	-12.0937	0.0000
Exact	(plane st	ress) solu	ution					
node	r-disp	z-disp	sigma-rr	sigma-zz	sigma-00	sigma-rz		
⊥ 2	0.2580	-0.0000	0.0000	0.0000	64.5000 64 5000	0.0000		
3	0.2580	-0.0048	0.0000	0.0000	64.5000	0.0000		
4	0.2403	0.0000	10.2679	0.0000	47.1071	0.0000		
5	0.2403	-0.0043	10.2679	0.0000	47.1071	0.0000		
7	0.2358	-0.0018	10.7334	0.0000	37.2666	0.0000		
8	0.2358	-0.0036	10.7334	0.0000	37.2666	0.0000		
10	0.2327	0.0000	6.7515 6.7515	0.0000	29.6235	0.0000		
11	0.2250	0.0000	0.0000	0.0000	22.5000	0.0000		
12	0.2250	-0.0008	0.0000	0.0000	22.5000	0.0000		
13	0.2250	-0.0017	0.0000	0.0000	22.5000	0.0000		

FIGURE 7.16. Rotating disk benchmark: computed results and exact solution for 2-element Quad8 mesh, with Poisson ratio $\nu = 1/3$.

(a) 2 x 1 Mesh of Quad8 Elements, v = 1/3:

FIGURE 7.17. Rotating disk benchmark: radial plots of u_r , σ_{rr} and $\sigma_{\theta\theta}$ for 2-element and 8-element Quad8 meshes, with Poisson ratio $\nu = 1/3$.

Figure 7.14. Radial displacements u_r , radial stresses σ_{rr} and hoop stresses $\sigma_{\theta\theta}$ are graphically compared over $a \le r \le b$ with the exact solution in Figure 7.15(a).

As can be seen u_r and $\sigma_{\theta\theta}$ are satisfactorily predicted. The radial stress, however, is way off,

Chapter 7: AXISYMMETRIC SOLID BENCHMARK PROBLEMS

especially at the inner and outer boundaries, at which it should be zero. This is again a consequence of the impossibility of doing interelement stress averaging there. For this low-order model the variation of σ_{rr} in the *r* direction is limited to be constant within the element.

Increasing Ner to 16 gives a solution that is compared with the exact one in Figure 7.15(b). Both u_r and $\sigma_{\theta\theta}$ are correct to at least 3 places. The notable flaw is the discrepancy of σ_{rr} at both boundaries. Again this is a consequence of lack of interelement averaging. Away from the hole σ_{rr} agrees with the exact solution to satisfactory accuracy.

The analysis is then redone with the 8-node quadrilateral Quad8 with reduced (2×2) integration. To make a fair comparison with Quad4, the Quad8 meshes contain half the elements: 2 and 8, respectively, which results in a similar number of nodes.

The results of running Quad8 with Ner=2 are tabulated in Figure 7.16. Radial displacements u_r , radial stresses σ_{rr} and hoop stresses $\sigma_{\theta\theta}$ are graphically compared over $a \le r \le b$ with the exact solution in Figure 7.17(a). This element is supposed to be nodally exact for one-dimensional problems, and indeed the computed and exact u_r may be verified to agree numerically to 15 places at all nodes. The hoop stress should be also nodally exact since $\sigma_{\theta\theta} = E u_r/r$, but the extrapolation from Gauss points introduces discrepancies. The computed radial stress σ_{rr} is as good as can be expected from a linear variation over the element.

Running Quad8 with Ner=8 give the results plotted in Figure 7.17(b). Again the displacements are nodally exact. Both σ_{rr} and $\sigma_{\theta\theta}$ agree everywhere with the exact solution at plot accuracy.

Rerunning these cases for a Poisson ratio close to $\frac{1}{2}$ shows deteriorartion of Quad4 accuracy, but not so dramatic as that experienced in the pressurized thick cylinder benchmark. This indicates that volumetric locking is less of a problem in this case, as could be expected since the plane stress condition allows lateral expansion and contraction.

FIGURE 7.18. Point-loaded circular plate bending benchmark problem.

§7.3. Benchmark 3: Point Loaded SS Circular Plate Bending

The third benchmark problem is a simply-supported (SS) circular plate bent by a lateral point load. The plate has radius R and thickness h. The point load of magnitude P acts downward at the plate center. The material is isotropic with elastic modulus E and Poisson's ratio v. See Figure 7.18(a,b) for the problem definition.

Two FEM discretizations are pictured in Figure 7.18(c,d).

For the Quad4 element type 4×2 and 16×2 discretizations are used, whereas for Quad8 the meshes are 2×1 and 8×1 . The reason for selecting 2 elements along *z* for the Quad4 discretization is that it provides nodes at the midplane z = 0, allowing a midplane-symmetric specification of the simple supported BC at r = R.

For the Quad8 discretization one element along z is sufficient since several midnodes are available on the midplane. Nodes are allowed to move in the z direction except those on the midplane z = 0at r = R. The 3 nodes at r = 0 must be constrained against radial motion. The resulting support conditions are shown in Figure 7.18(c,d). The central point load P is divided by 2Π since $K_{fac} = 1$ and then appropriately lumped to the 3 nodes on the z axis.

§7.3.1. Exact Solution

The exact solution⁵ for a Kirchhoff plate model of this problem⁶ gives the bending moments and associated stresses as

$$M_{rr} = \frac{P}{4\pi} (1+\nu) \log \frac{R}{r}, \quad \sigma_{rr} = 12M_{rr}z/h^3,$$

$$M_{\theta\theta} = \frac{P}{4\pi} \left[(1+\nu) \log \frac{R}{r} + 1 - \nu \right], \quad \sigma_{\theta\theta} = 12M_{\theta\theta}z/h^3,$$
(7.5)

Other stress components are zero. Moments and stresses given by (7.5) become infinite at r = 0under the point load, so when comparing to a FEM solution r is limited to $r \le r_{truc} = R/1000$ to avoid blow-ups. The stresses at the upper and lower plate surfaces are $\sigma_{rr} = \pm 12M_{rr}(h/2)/h^3 = \pm 6M_{rr}/h^2$ and $\sigma_{\theta\theta} = \pm 12M_{\theta\theta}(h/2)/h^3 = \pm 6M_{\theta\theta}/h^2$. The transverse displacement is

$$u_z = -\frac{P}{16\pi D} \left[\frac{3+\nu}{1+\nu} (R^2 - r^2) + 2r^2 \log \frac{r}{R} \right],$$
(7.6)

where $D = Eh^3/(12(1 - v^2))$ is the plate rigidity. Note that u_z does not depend on z, which follows from the Kirchhoff thin plate theory assumptions. Also u_z is finite at r = 0 because $\lim_{r\to 0} r^2 \log(r/R) = 0$. The radial displacement is given by

$$u_r = -z \frac{\partial u_z}{\partial r} = \frac{P}{8\pi D} \left(\frac{3+\nu}{1+\nu} - 1 - 2\log\frac{r}{R} \right) r z, \qquad (7.7)$$

which also vanishes at r = 0.

§7.3.2. Driver Script

The driver script for the point-loaded circular plate benchmark is listed in Figure 7.19. This is similar to the previous scripts except for the use of 2 elements along the thickness (the axial or z direction) if the element type is Quad4. The central force is scaled by $K_{fac}/(2\pi) = 1/(2\pi)$ and distributed to the 3 nodes at r = 0.

⁵ Taken from S. Timoshenko and S. Woinowsky-Krieger, *Theory of Plates and Shells*, McGraw-Hill, 2nd ed., 1959, Ch. 2.

⁶ The Kirchhoff model assumes that the plate is thin in the sense that $h \ll R$, but not so thin as to become a membrane.

```
ClearAll[Em, v, a, b, h, Kfac, \rho, Ner, Nez, numer];
Em=1000.; v=N[1/3]; Ner=4; Nez=1; etype="Quad4";
Kfac=1; a=4; b=10; h=1; aspect=h/(b-a); ρ=3.0; =0.5;
numer=True:
(* Define FEM model *)
MeshCorners=N[\{\{a,0\},\{b,0\},\{b,h\},\{a,h\}\}];
If [etype=="Quad4",
    NodeCoordinates=GenQuad4NodeCoordinates[MeshCorners,Ner,Nez];
    ElemNodes= GenQuad4ElemNodes[Ner,Nez]];
If [etype=="Quad8",
    NodeCoordinates=GenQuad8NodeCoordinates[MeshCorners,Ner,Nez];
    ElemNodes= GenQuad8ElemNodes[Ner,Nez]];
numnod=Length[NodeCoordinates]; numele=Length[ElemNodes];
ElemTvpe=
                Table[etype, {numele}];
ElemMaterial= Table[{Em,v}, {numele}];
ElemBodyForces=Table[{0,0}, {numele}];
For [e=1,e<=numele,e++, enl=ElemNodes[[e]];</pre>
     ncoor=Table[NodeCoordinates[[enl[[i]]]],{i,4}];
      \{ \{r1, z1\}, \{r2, z2\}, \{r3, z3\}, \{r4, z4\} \} = ncoor; \\ \texttt{ElemBodyForces[[e]]} = \rho * | \ ^2 * \{ \{r1, 0\}, \{r2, 0\}, \{r3, 0\}, \{r4, 0\} \} ]; 
FreedomTags=FreedomValues=Table[{0,0}, {numnod}];
If [etype=="Quad4",
    For [n=1,n<=numnod-Nez,n=n+Nez+1, FreedomTags[[n]]={0,1}]];</pre>
If [etype=="Quad8",
    For [n=1,n<=numnod-2*Nez,n=n+3*Nez+2, FreedomTags[[n+1]]={0,1}];</pre>
ElemTractionForces={}; DefaultOptions={True};
(* Print model definition statements removed to shorten script *)
Plot2DElementsAndNodes[NodeCoordinates,ElemNodes,aspect,
    "Rotating disk mesh", True, True];
(* Solve problem and print results *)
{NodeDisplacements,NodeForces,NodeStresses}=RingAnalysisDriver[
    NodeCoordinates, ElemType, ElemNodes,
    ElemMaterial,ElemBodyForces,ElemTractionForces,
    FreedomTags,FreedomValues,DefaultOptions];
PrintRingAnalysisSolution[NodeDisplacements,NodeForces,
    NodeStresses, "Computed solution", {}];
{ExactNodeDisplacements,ExactNodeStresses}=
    ExactSolution[NodeCoordinates, {a,b,h}, {Em,v,p}, ],
     "RotatingThinDisk", numer];
PrintRingNodeDispStresses[ExactNodeDisplacements,
    ExactNodeStresses,"Exact solution",{}];
(* Contour plot of stress distributions *)
legend={(a+b)/2,0.75*h}; whichones={True,False,True,False};
ContourPlotStresses[NodeCoordinates,ElemNodes,NodeStresses,
  whichones, True, { }, legend, aspect];
(* Radial plots comparing FEM vs exact solution *)
pwhat={"ur","\sigmarr","\sigmazz","\sigma\theta\theta"};
For [ip=1,ip<=Length[pwhat],ip++, what=pwhat[[ip]];</pre>
     RadialPlotFEMvsExact[etype,NodeCoordinates,NodeDisplacements,
       NodeStresses, \{a,b,h\}, \{Em,v,\rho\}, |, \{Ner,Nez\},
        "RotatingThinDisk", what, 0, numer] ];
```

FIGURE 7.19. Script for point loaded circular plate benchmark problem.

§7.3.3. Numerical Results

The numerical results presented here were computed for R = 10, h = 1, E = 1000, $\nu = 1/3$ and P = 10, two element types, and two discretizations for each type.

The script of Figure 7.19 specifically sets etype="Quad4", Ner=4, Nez=2 and $\nu = 1/3$. The mesh is actually that pictured in Figure 7.18(c). Computed and exact nodal values are tabulated in Figure 7.20. The values shown as "exact" for stresses σ_{rr} and $\sigma_{\theta\theta}$ are actually those evaluated from the Kirchhoff solution (7.6) at r = R/1000 = 1/100, since those equations have logarithmic singularities as $r \rightarrow 0$. Radial displacements u_r , radial stresses σ_{rr} and hoop stresses $\sigma_{\theta\theta}$ are graphically compared over $a \leq r \leq b$ with the exact solution in Figure 7.21(a). To avoid plot blow-ups the "exact" solutions are again truncated to that small radius.

The radial displacement has the right shape but is underpredicted. This is a mild case of the so-called "shear locking": a significant amount of element energy is spend in shear, resulting in overstiffness. The effect would get worse if the thickness-to-radius ratio (1/10 for this benchmark) is decreased. Considering the coarse mesh the stress predictions are OK sufficiently away from the plate center, say, for r > 2. Evidently the FEM solution has trouble capturing the singularity; for that a refined mesh near the center would be required.

Increasing Ner to 16 gives a solution that is compared with the exact one in Figure 7.21(b). Shear locking is alleviated but the transverse displacement is still somewaht underpredicted. The stress distribution away from the center are significantly improved, but the singularity is still poorly captured.

The analysis is then redone with the 8-node quadrilateral Quad8 with reduced (2×2) integration. To make a fair comparison with Quad4, the Quad8 meshes contain half the elements: 2 and 8, respectively, in the radial direction, and only one in the axial direction.

The results of running Quad8 with Ner=2 are tabulated in Figure 7.22. Radial displacements u_r , radial stresses σ_{rr} and hoop stresses $\sigma_{\theta\theta}$ are graphically compared over $a \le r \le b$ with the exact solution in Figure 7.23(a). It can be seen that the transverse displacement u_z is well captured (within about 1%) since this element does not suffer from shear locking. The stress distribution is fine away from the center. Capturing the singularity is obviously difficult with 2 elements and a linear stress variation radially, but the model does a good fitting job.

Running Quad8 with Ner=8 give the results plotted in Figure 7.23(b). The fit to both displacements and stresses is good, even fairly close to the singularity. No trace of shear locking is observed.

Rerruning these models with $\nu = 0.499$ (results not shown here) degrades the Quad4 results further (some volumetric locking adds to the shear locking)but has little effect on the Quad8 discretization.

Comput	ted soluti	on							-
node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{c} r-disp\\ -disp\\ 0.000\\ 0.000\\ 0.000\\ 0.0189\\ 0.000\\ -0.0189\\ 0.0231\\ 0.0231\\ 0.0224\\ 0.02244\\ 0.02244\\ 0.0244\\ 0.0242\\ 0.0242\\ 0.0000\\ -0.0242\\ \end{array}$	$\begin{array}{c} z-disp\\ -0.4227\\ -0.4227\\ -0.4227\\ -0.3516\\ -0.3516\\ -0.3530\\ -0.2428\\ -0.2428\\ -0.2428\\ -0.1222\\ -0.1222\\ -0.1222\\ 0.0003\\ 0.0000\\ 0.0003\end{array}$	sigma-rr 13.4338 0.0000 -13.4338 10.3857 0.0000 -10.3857 4.0131 0.0000 -4.0131 2.0584 1.2697 0.0000 -1.2697	sigma-zz 4.1445 0.0000 -4.1445 4.8514 0.0000 -4.8514 2.2300 0.0000 -2.2300 1.2624 0.9626 0.0000 -0.9626	sigma-00 13.4338 0.0000 -13.4338 12.4267 0.0000 -12.4267 6.5383 0.0000 -6.5383 4.2986 0.0000 -4.2986 3.1253	sigma-rz 10.6640 10.8184 10.6640 -0.7101 -0.5780 -0.7101 -0.1441 -0.0730 -0.1441 -0.0619 -0.0325 -0.0619 0.2516	$\begin{array}{c} r-force\\ -3.9528\\ 0.0000\\ 3.9528\\ 0.0000\\ 0.000\\ 0.$	z-force -0.3979 -0.7958 -0.3979 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.5915 0.0000	
Thin	plate (Kir	chhoff) s	olution						
node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{c} r-disp\\ 0.0000\\ 0.0000\\ 0.0227\\ 0.0000\\ -0.0227\\ 0.0306\\ 0.0306\\ 0.0330\\ 0.0330\\ 0.0330\\ 0.0318\\ 0.0000\\ -0.0318\end{array}$	$\begin{array}{c} z-disp\\ -0.5305\\ -0.5305\\ -0.4606\\ -0.4606\\ -0.3243\\ -0.3243\\ -0.1634\\ -0.1634\\ -0.1634\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	sigma-rr 43.9761 0.0000 -43.9761 8.8254 4.4127 0.0000 -4.4127 1.8314 0.0000 -1.8314 0.0000 0.0000 0.0000	sigma-zz 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	sigma-00 47.1592 0.0000 -47.1592 12.0085 7.5958 0.0000 -7.5958 5.0145 0.0000 -5.0145 3.1831 0.0000 -3.1831	sigma-rz 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			

FIGURE 7.20. Point loaded circular plate benchmark: computed results and exact solution for 4×2 Quad4 mesh, with Poisson ratio v = 1/3.

(a) 4 x 2 Mesh of Quad4 Elements, v = 1/3:

FIGURE 7.21. Point loaded circular plate benchmark: radial plots of u_r , σ_{rr} and $\sigma_{\theta\theta}$ for 4×2 and 16×2 element Quad4, with Poisson ratio v = 1/3. Plot is along the bottom plate surface z = -h/2.

Comput- node 2 3 4 5 6 7 8 9 10 11 12 13	ed solution r-disp 0.0000 0.0000 0.0223 -0.0223 0.0308 0.0308 0.0300 -0.0330 -0.0330 -0.0318 0.0000 -0.0318	on z-disp -0.5381 -0.5409 -0.5381 -0.4676 -0.3265 -0.3265 -0.3265 -0.3265 -0.1641 -0.1641 0.0002 0.0000	sigma-rr 17.7424 0.0000 -17.7424 10.2753 -10.2753 3.4321 0.0000 -3.4321 1.9422 -1.9422 -0.1718 0.0000 0.1718	sigma-zz 0.3592 0.0000 0.0000 0.0000 0.0939 0.0026 -0.0626 -0.0626 -0.0462 0.0000 0.09462	sigma-00 17.7424 12.3574 -12.3574 7.1442 0.0000 -7.1442 5.1496 -5.1496 2.9832 0.0000 -2.9832	sigma-rz 1.9099 1.9099 0.9549 0.1469 0.1469 0.1469 0.2204 0.2204 0.1469 0.1469 0.1469 0.1469	r-force -1.3263 0.0000 1.3263 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	z-force -0.2653 -1.0610 -0.2653 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.5915 0.0000	
Thin p node 2 3 4 5 6 7 8 9 10 11 12 13	late (Kir r-disp 0.0000 0.0000 0.0227 -0.0227 0.0306 0.0306 0.0330 -0.0330 -0.0318 0.0000 -0.0318	chhoff) so z-disp -0.5305 -0.5305 -0.4606 -0.4606 -0.3243 -0.3243 -0.3243 -0.1634 -0.1634 0.0000 0.0000	blution sigma-rr 43.9761 0.0000 -43.9761 8.8254 -8.8254 4.4127 0.0000 -4.4127 1.8314 -1.8314 0.0000 0.0000 0.0000	sigma-zz 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	sigma-00 47.1592 0.0000 -47.1592 12.0085 -12.0085 7.5958 0.0000 -7.5958 5.0145 -5.0145 3.1831 0.0000 -3.1831	sigma-rz 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			

FIGURE 7.22. Point loaded circular plate benchmark: computed results and exact solution for 2×1 Quad8 mesh, with Poisson ratio $\nu = 1/3$.

FIGURE 7.23. Point loaded circular plate benchmark: radial plots of u_r , σ_{rr} and $\sigma_{\theta\theta}$ for 2×1 and 8×1 Quad8 meshes, with Poisson ratio $\nu = 1/3$. Plot is along the bottom plate surface z = -h/2.

Homework Exercises for Chapter 7 Axisymmetric Solid Benchmark Problems

EXERCISE 7.1 [C:20] This exercise deals with the thick-tube benchmark example discussed in §13.2–5. The script for this exercise is in Cell 12 of the Notebook Quad4SOR.nb supplied with this Chapter.

- (a) Repeat the 4-element analysis using $\nu = 0.45$ and $\nu = 0.499$. Describe what happens to the accuracy of displacements and stresses when compared with the exact solution.
- (b) Can a more refined mesh fix the problems noted in (a)? To check, run 16 elements along the radial direction and report if things have improved.

EXERCISE 7.2 [C:20] A concrete pile embedded in a soil half-space, as defined in Figure E7.1. This problem is solved using a very coarse mesh in Cell 17 of the Notebook Quad4SOR.nb supplied with this Chapter. Repeat the analysis using a more refined mesh, like that suggested in the figure. Module GenerateGradedRingNodeCoordinates may be used to generate a graded regular mesh.

The total force applied to pile is P = 500000 lbs (this may be assumed to be uniformly distributed on the top pile surface, or placed as a point load). Other data: pile modulus $E_P = 300,000$ psi, soil modulus $E_S = E_P/50$, Poisson's ratio for pile $v_P = 0.1$, Poisson's ratio for soil $v_S = 0.40$, pile diameter d = 10 in, pile length L = 250 in, and mesh z-length H = 1.2L. Truncate the mesh at R = 80 in. Neglect all body forces.

Nodes on the "soil truncation boundary" should be fixed. Points on the z axis r = 0 should be on vertical rollers except for 1.

The most interesting numerical results are: (i) the top and bottom vertical displacement of the pile, (ii) the reaction forces at the bottom of the pile, and (iii) the normal stress σ_{zz} in the pile.

EXERCISE 7.3 [C:20] The spinning Mother Earth. Model one quadrant of the planet cross section with an axisymmetric finite element mesh as sketched in Figure E19.3 (note that all elements are 4-node quadrilaterals). The problem is solved in Cell 18 of the Notebook Quad4SOR.nb supplied with this Chapter, using a very coarse mesh of only 4 elements.

Use the Kg-force/m/sec unit system for this problem. The Earth spins with angular velocity $\omega = 2\pi \text{ rad/24hrs}$ = $(2\pi/86400) \text{ sec}^{-1}$ about the z axis. The planet radius is $R = 6370 \text{ Km} = 6.37 \times 10^6 \text{ m}$. For E take 1/3 of the rigidity of steel, or $E = 7 \times 10^5 \text{ Kg/cm}^2 = 7 \times 10^9 \text{ Kg/m}^2$ as Love (Theory of Elasticity) recommends; Poisson's ratio $\nu = 0.3$ (this is my own guess), and mass density $\rho = 5.52$ times the water density. [Watch out for units: the centrifugal body force $\rho \omega^2 r$ should come up in Kg/m³.] All gravitational field effects (self weight) are ignored.

- (a) Get the equatorial "bulge" and the polar "flatening" in Km, and the maximum stress in MPa.
- (b) Where do the maximum normal stresses occur?

Figure E7.1. Pile embedded in soft soil.

Exercises

Figure E7.2. Our spinning planet.