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Abstract We discuss the numerical modeling of the infiltration of contaminated water into
unsaturated porous media. A system with contaminant transport, dispersion, and adsorption is
considered. The mathematical model for unsaturated flow is based on Richards nonlinear and
degenerate equation. Nonlinear adsorption is represented by adsorption isotherms and kinetic
rates. An accurate numerical method is constructed in 1D which can be a good candidate
for the solution of inverse problems to determine model parameters in the adsorption part
of the model. Our numerical solution is based on the method of lines (MOL method) where
space discretization leads to the corresponding system of ODEs. We substantially use the
numerical modeling of interfaces, separating fully saturated, partially saturated, and dry
zones in the underground. Finally, in a series of numerical experiments and in comparisons
with HYDRUS (Šimunek et al., The HYDRUS-1D software package for simulating the
one-dimensional movement of water, heat, and multiple solutes in variably/saturated media,
version 2.0, Rep. IGWMC-TPS-70, 202 pp., Int. Groundwater Model. Cent., Colo. Sch of
Mines, Golden, Colo), we demonstrate the effectiveness of our method.

Keywords Contaminant Transport · Unsaturated flow · Nonlinear adsorption ·
Numerical modelling of contaminant transport

1 Introduction

The protection of clean water in aquifers represents an important part in many research
teams’ projects. Many scientists and engineers focus on this field. Numerous monographs
and articles, appeared over the last decade, have significantly contributed to this field. The
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contaminated surface water infiltrates into the unsaturated underground and there, the con-
taminant dissolved in the water obeys a complex of geophysical and geochemical processes.
Many mathematical models describe them realistically (see Sun 1966) and there are many
numerical methods for their realization ( see e.g., Sun 1994; Šimunek and Nimo 2005; Bitter-
lich and Knabner 2002; Krutle and Knabner 2007; Krutle and Knabner 2005; Totsche et al.
1996; Bitterlich et al. 2004 etc.). We consider mathematical models describing advection,
dispersion-diffusion, and adsorption of a contaminant. In fact, these mathematical models
include a lot of data (hydrological and geochemical) strongly related to the specific site
where the model is applied. These data have to be measured and some of them have to be
determined by solving the inverse problems (via black box) when additional measurements
of some characteristics are available. Some of these model data (e.g., soil parameters in
capillary pressure and hydraulic permeability dependence in terms of saturation, adsorption
isotherms) can be obtained in laboratory conditions with 1D samples (using tubes of the cor-
responding underground)—see, e.g., Sun (1994), Šimunek and Nimo (2005), Totsche et al.
(1996), Bitterlich et al. (2004), Kacur et al. (2005), and citations there. Then they can be
used in complex 3D models. The solution of the inverse problem requires a very accurate
and effective numerical solution of the direct problem. The main goal of our contribution is
to propose such a numerical method in 1D. In our contribution we focus on the numerical
modeling of contaminant transport with adsorption in unsaturated-saturated porous media.
The corresponding mathematical model is strongly nonlinear, linking advection, diffusion-
dispersion, and adsorption together. Especially, when the contaminated water infiltrates into
the originally dry porous media, there appear saturated, partially saturated, and (remaining)
dry zones, separated by moving interfaces. These interfaces are implicitly included in the
solution, although they are not known originally. Moreover, the contaminant dissolved in
the water can also generate zones where it is present or absent, due to (generally) nonlinear
adsorption (Kacur et al. 2010). It is well-known that the front of saturation in the neighbor-
hood of a dry zone is very sharp. Hence, it is very difficult to approximate its derivatives
(see Constales and Kacur 2004) since they can be unbounded at the interface. Application of
moving grid points in numerical approximation is desirable. There are some strategies for the
construction of moving grid points. One was applied in, e.g., Kacur et al. (2010), where the
nonlinear adsorption and diffusion problem in a fully saturated porous media was considered.
Implementation of this discretization strategy would decrease the effectiveness of our method
significantly. Our construction of moving grids is strongly linked to the moving interfaces.
The system for water infiltration into the dry region is governed by the strongly nonlinear and
degenerate Richards equation (“porous media type equation”) which gives rise to two inter-
faces. Once we know the evolution of the wetness front, we solve our mathematical model
only in the moving domain bounded by this front. Moreover, we can easily construct moving
grids linked only with this moving front. We have developed a mathematical model for the
time evolution of these (full saturation and wetness) interfaces. They are substantially used
in the construction of moving grids which “follow” these interfaces; thus we obtain accurate
numerical approximations (of gradients of unknowns) for the considered time interval. We
demonstrate the accuracy of our computations in numerical experiments by controlling the
water and contaminant mass balances. Also, comparisons of our results with those obtained
by the well-tested and widely used software HYDRUS are very important. Although this
numerical method is completely different from ours, the results of both methods are in good
agreement. This gives additional support for our method. We discuss the comparison of both
methods in Sect. 4.1. Some numerical experiments with our method are presented in Sect. 4.2.
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A Solution for Infiltration and Adsorption 225

2 Mathematical Model

The mathematical model for the convection-diffusion-adsorption of the contaminant is based
on the Fick’s law and the mass balance argument. The flow in unsaturated porous media is
modeled by the hydraulic conductivity K , where K (h) = Ks · k(h) and k(h) is a function
describing the dependency of the conductivity on the pressure head h, or on the corresponding
effective saturation (see van Genuchten 1980). Here, Ks is the hydraulic conductivity in fully
saturated porous media,

Ks = κ0
ρg

μ
, (1)

where ρ and μ are the density and the dynamical viscosity of the water, respectively. The
coefficient κ0 depends only on the structure of the porous medium and g is the gravitational
acceleration. Richards equation in the unsaturated zone can be written in terms of saturation
θ and reads as

∂tθ = div(K (h)∇(h + z)), (2)

where K (h) is expressed in terms of effective saturation u (rescaled θ )

u = θ − θr

θ0
, θ0 = θs − θr (3)

and reads as

K (h) = Ksk(u), k(u) = u
1
2 (1 − (1 − u

1
m )m)2. (4)

Here, θs and θr are fully saturated and residual water contents, respectively. We consider the
capillary pressure model in the following form:

u = 1

(1 + (αh)n)m
, (5)

where n > 1, m = 1 − 1
n and α < 0 are the soil parameters in the van Genuchten–Mualem

(empirical) model.

There are also other models (Brooks and Corey, Brutsaert, Vauclin), but we will use the
van Genuchten–Mualem model, because the fundamental relations (hydraulic conductivity
versus saturation and saturation versus head) reflect the appearance of interfaces separating
saturated, partially saturated, and dry zones. The contaminant transport is the superposition
of advective and diffusive-dispersion parts—see Sun (1966). Darcy’s discharge is given by
v = −K (u)∇(h + z) and the corresponding contaminant flux is given by

Jadv = vw, (6)

where w is the concentration of the contaminant dissolved in the water. We assume isotropy
and homogeneity of the porous medium. Due to the diffusion-dispersion, the contaminant
flux is given by

Jdis = −θD · ∇w. (7)

Here, D is a positive definite symmetric matrix. The components of D can be expressed as

Di j = (D0 + αT |v|)δi j + viv j

|v| (αL − αT ), (8)
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where αL , αT are longitudinal and transversal dispersivities, respectively, δi j is the Kronecker
delta, and D0 is the molecular diffusion coefficient.

Using the mass balance equation for the total flux J = Jadv + Jdis we get the equation for
the transport of the contaminant with diffusion,

∂(θw)

∂t
= −∇ · J, (9)

which leads to the well-known convection-diffusion equation

∂t (θw) + div(vw − θD∇w) = −ρ∂t S. (10)

The adsorption of the contaminant is governed by the equation (see, e.g., Knabner and van
Duijn 1995; Constales et al. 2003)

∂t S = κ(�(w) − S), (11)

where S represents the adsorbed contaminant by a unit mass of porous media, κ is the
adsorption rate coefficient, and � represents an adsorption isotherm.

The mathematical model (11) is a very simple one where the most common isotherms
can be considered (see, e.g., Totsche et al. 1996; Sun 1994; Knabner and van Duijn 1995;
Constales et al. 2003):

�(s) = as(linear);�(s) = asb(Freundlich);�(s) = as

1 + bs
(Langmuir);

�(s) = asr

1 + bsr
(Mixed Freundlich-Langmuir).

In (11), the reversible adsorption mode is considered where the contaminant can be both fixed
to the solid and dissolved back from the solid into the water. It is also possible to consider
the irreversible model, where the contaminant cannot be dissolved back into the water. Then,
the following modification of (11) can be used:

∂t S = κ max(0, �(w) − S). (12)

Another extension can be considered, when some compounds of the solid matrix adsorb the
contaminant in an equilibrium mode which corresponds to κ → ∞. In that case we have
S = Se = �e(s), where �e(s) is the adsorption isotherm in the equilibrium mode and it can
have one of the above-mentioned forms. In that case the R.H.S. term ρ∂t Se = ρ∂t�e(w) can
be added to the term ∂t (θw) on the L.H.S. of (10). In general, the contaminant can be adsorbed
both in the equilibrium and non-equilibrium modes. In that case (due to superposition) we
obtain (11), where we replace ∂t (θw) by ∂t (θw + ρ�e(w)). Then �(s) in (11) represents
the adsorption isotherm in the non-equilibrium mode with the corresponding S—see Kacur
et al. (2005), Knabner and van Duijn (1995), Kacur et al. (2010), Constales et al. (2003).

The presented model is completed by initial and boundary conditions. In our numerical
experiments we approximate the system in the form (2), (10), (11).

The unsaturated-saturated flow in the sample is drawn in Fig. 1.

Remark 1 Our mathematical model can be extended to the case when Ks and θs are dependent
on the amount of the adsorbed contaminant S. Then our system is strongly coupled and the
flow part cannot be separated.

Remark 2 We note that our method together with the existing code could be extended to
the case when more contaminants are dissolved in the water and obey chemical reactions.
Consequently, our system would increase and it would be coupled with a system of algebraic
equations. This can be solved by DAE solvers for stiff problems.
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A Solution for Infiltration and Adsorption 227

Fig. 1 Sketch of
unsaturated/saturated flow in a
sample

2.1 Stages in Our 1D Model and Corresponding Boundary Conditions

In our 1D model we assume that the domain is a sample (in the form of a tube). On its top
there is an 	(t) column of contaminated water infiltrated (due to the gravitation and capillary
forces) into the originally dry sample. On its bottom there is a tube where outgoing water
flows out. We will denote by 	2(t) the height of the outgoing water in the bottom tube (which
has equal sectional area as the top column) and by Sout the total amount of the contaminant
in this outgoing water. The whole process we are modeling, generally, undergoes different
stages with different boundary conditions. Roughly speaking, these stages can be:

1. The water infiltrates into the sample and does not flow out.
2. The water does not infiltrate (the top column is empty) and does not flow out.
3. The water infiltrates into the sample and flows out from the sample at the same time,

while the whole sample is not fully saturated.
4. The water infiltrates into the sample and flows out from the sample at the same time,

while the whole sample is fully saturated.
5. The water does not infiltrate into the sample and the water flows out from the sample.

We briefly describe these stages in the next subsections, referring to each stage under
the number it was noted here. Note that not all of these stages happen in one experiment
(e.g., the experiment will start at Stage 1, continue with Stage 2, and end at Stage 5). Let us
rewrite our governing ODEs in 1D:
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∂tθ = ∂x (K (u)(∂x h − 1)) (13)

∂t (θw) + ∂x (qw − (D0θ + αLq)∂xw) + ρ∂t S = 0 (14)

∂t S = κ(�(w) − S), (15)

where q(x, t) = −K (u)(∂x h −1), K (u) = Ksu
1
2 (1− (1−u

1
m )m)2, u = θ−θr

θ0
,θ0 = θs − θr ,

and �(s) = asb.

2.1.1 Stage 1

In this stage there are two interfaces s1 and s2 in the sample. The interval (0, s1(t)) represents
the fully saturated zone of the sample, (s1(t), s2(t)) represents the partially saturated zone of
the sample, and (s2(t), d) represents the dry zone, where d is the length of the sample. The
flow model in the fully saturated zone is governed by Darcy’s law (u = 1) in (0, s1(t)) and
the pressure head is positive and linear, satisfying h(s1(t), t) = 0 and h(0, t) = 	(t). Since
the water flux is constant along the whole domain (0, s1(t)) we obtain

∂t	(t) = Ks

(
1 + 	(t)

s1(t)

)
≡ −q(0, t). (16)

To determine s2 we follow the ideas in Constales and Kacur (2004) and Constales et al.
(2003). The time evolution of the wetness front is strongly linked with local properties of the
saturation profile at the wetness front and it is expressed in the form of an ODE:

∂t s2(t) = − Ksm2

αθ0(n − 1)p
∂x u(1, t)p, p = 1

m
+ 1

2
. (17)

The mathematical model for the interface s1 is based on the mass balance equation which
can be simplified to the form

s1(t) = − 	(t)

∂+
x h(s1(t), t)

. (18)

Boundary conditions for the effective saturation in these interfaces are given by u(s1(t), t)=1
and u(s2(t), t) = 0. The condition for the concentration at x = 0 is derived from the mass
balance of the contaminant and can be written as

qw(0, t) = qw − (D0θ + αLq)∂xw|(x,t)=(0,t) = −w	(t)∂t	, (19)

where w	(t) is the concentration of the infiltrating water at time t . Other boundary conditions
are:

∂−
x w(s1(t), t) = ∂+

x w(s1(t), t), (20)

∂xw(s2(t), t) = 0. (21)

2.1.2 Stage 2

In this stage there is only one interface s2 separating the partially saturated zone and the
dry zone. Conditions (17) and (21) are the same as in Stage 1, and we use new boundary
conditions

∂x h(0, t) = 1, (22)

qw(0, t) = qw − (D0θ + αLq)∂xw|(x,t)=(0,t) = 0. (23)
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A Solution for Infiltration and Adsorption 229

2.1.3 Stage 3

In this stage there is only one interface s1 separating the fully saturated zone and the partially
saturated zone. Conditions (16), (18), (19), and (20) are the same as in Stage 1, while in the
boundary condition (21) the interface s2(t) is replaced by the length of the sample d:

∂xw(d, t) = 0. (24)

Additionally, we use

∂xθ(d, t) = 0, (25)

∂t	2(t) = q(d, t) = K (h(d, t)), (26)

∂t Sout (t) = q(d, t)w(d, t) = K (h(d, t))w(d, t). (27)

2.1.4 Stage 4

In this stage there are no interfaces and the whole sample is fully saturated. We do not need to
compute the saturation, we just compute the concentration and the adsorption. The condition
(19) is the same as in Stage 1 and conditions (24), (27) are the same as in Stage 3. In the
boundary condition (16) the interface s1(t) is substituted by the length of the sample d:

∂t	(t) = −Ks

(
1 + 	(t)

d

)
≡ −q(0, t). (28)

We consider a new condition:

∂t	2(t) = Ks

(
1 + 	(t)

d

)
≡ q(0, t). (29)

Note that conditions (28) and (29) are linear and, therefore, we can solve them analytically:

	(t) = (	(t1) + d)e
Ks
d (t1−t) − d (30)

	2(t) = 	(t1) + 	2(t1) + d − (	(t1) + d)e
Ks
d (t1−t) (31)

2.1.5 Stage 5

In this stage there are no interfaces and the whole sample is partially saturated. Conditions
(22) and (23) are the same as in Stage 2 and conditions (24), (25), (26), and (27) are the same
as in Stage 3.

3 Numerical Method

3.1 Approximation of the Flow

Since the flow of the water is not affected by the contaminant transport in the chosen model,
we first focus on the flow. In the partially saturated zone (s1(t), s2(t)) (we define s1(t) ≡ 0 in
the stage without inflow and s2(t) ≡ d in the stage with outflow) we transform the governing
Richards equation to the fixed domain y ∈ (0, 1) using the transformation

y = x − s1(t)

ss(t)
, ss(t) = s2(t) − s1(t). (32)
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Moreover, we rewrite it in terms of saturation u since 0 < u < 1

∂t u = Ks

θ0ss(t)
∂y

(
W D(u)

ss(t)
∂yu − k(u) + 1

ss
(∂t s1(1 − y) + ∂t s2 y

)
∂yu (33)

where—see (5)

W D(u) := k(u)
∂h

∂u
(34)

u = 1 for y = 0, u = 0 for y = 1.

The flow model (33) is closed and completed by respective boundary conditions dependent
on the stage. The flow −q in the saturated zone ( u = 1) is given by the R.H.S. in (16)
(in Stage 4 by the R.H.S. in (28)).

It is quite natural to apply the MOL method (space discretization) in (33), (17), (18), and
(16) and to reduce it to a system of ODEs or DAEs (since the algebraic equation (18) may be
included, too). For a good approximation in a neighborhood of the wetting front we consider
grid points

0 = y0 < y1 < · · · < yi < · · · yN = 1, αi = yi − yi−1 (35)

so that αi = γαi−1 with γ ≤ 1. Let us define yi− 1
2

:= yi +yi−1
2 = yi−1 + αi

2 for i = 1, . . . , N

and integrate the equation (33) over the interval Ii = (yi− 1
2
, yi+ 1

2
) for i = 1, . . . , N − 1;

here we use the notation ui (t) ≈ u(yi , t). The rectangle rule gives∫
Ii

θ0∂t u(x, t))dx ≈ αi + αi+1

2
θ0∂t ui (t). (36)

We approximate the derivatives using central differences

∂yu(y, t)|y=y
i+ 1

2
≈ ui+1(t) − ui (t)

αi+1
:= ∂yu+

i , ∂yu(y, t)|y=y
i− 1

2

≈ ui (t) − ui−1(t)

αi
:= ∂yu−

i , (37)

and use the notation W Di− 1
2

= W D(u(yi− 1
2
)) and ki− 1

2
= k(u(yi− 1

2
)) for i = 1, . . . , N .

The derivative ∂yu is approximated by the derivative of the Lagrange polynomial (Li (y))
passing through the points (yi−1, ui−1), (yi , ui ), and (yi+1, ui+1) (to approximate ∂yu0 or
∂yuN included in the boundary conditions we take the Lagrange polynomial passing through
the points (y0, u0), (y1, u1), (y2, u2) or (yN−2, uN−2), (yN−1, uN−1), (yN , uN )). Then, our
approximation of (33) reads as follows

∂t ui = 2Ks

θ0(αi + αi+1)ss2 [W Di+ 1
2
∂yu+

i − W Di− 1
2
∂yu−

i + ss(ki− 1
2

− ki+ 1
2
)]

+∂t s1(1 − yi ) + ∂t s2 yi

ss
∂y Li (yi ), (38)

for i = 1, . . . , N − 1. We approximate the term ∂x u(1, t)p in (17) by ∂y L p
N−1(y)|y=1

where L p
N−1(y) is the Lagrange polynomial passing through the points (yN−2, u p

N−2), (yN−1,

u p
N−1), and (yN , 0).

Finally, if we use the notation

Y = [u1, . . . uN−1, s1, s2, 	, 	2] (39)
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A Solution for Infiltration and Adsorption 231

then our resulting system can be written in the form

M(Y, t)Ẏ = f (t, Y ) (40)

and can be solved by a solver for stiff DAEs (e.g., ode15s in the Matlab library).

3.2 Approximation Improvement

To increase the accuracy of our numerical approximations we consider the nonlinear and
degenerate Richards equation in terms of both the head and effective saturation. We choose
the grid point yi0 and consider the governing equation in pressure head for i = 1, 2, . . . , i0

and in saturation for i = i0 + 1, i0 + 2, . . . , N − 1. Our ODE linked with the grid point
yi has been obtained by applying the finite volume method which is mass conservative. In
the approximation of the flux qi− 1

2
we have to take Di− 1

2
, Ki− 1

2
requiring ui− 1

2
which is

unknown, and hence we set ui− 1
2

= 1
2 (ui−1 + ui ). Here, some “up wind” type phenomenon

arises. The finite difference type strategy can be more accurate in this case and numerical
experiments support it. The governing equation can be written in the form

∂t u = Ks

θ0ss(t)

(
(k′(u)h′(u) + k(u)h′′(u))(∂yu)2 + k(u)h′(u)∂yyu

ss(t)
− k′(u)∂yu

)

+ (∂t s1(1 − y) + ∂t s2 y)∂yu

ss(t)
, (41)

and in terms of pressure head h in the form

u′(h)∂t h = Ks

θ0ss(t)

(
k′(u(h))u′(h)(∂yh)2 + k(u(h))∂yyh

ss(t)
− k′(u(h))u′(h)∂yh

)
(42)

+ (∂t s1(1 − y) + ∂t s2 y)u′(h)∂yh

ss(t)
.

We approximate the derivatives ∂yh and ∂yyh by the derivative of the Lagrange polynomial
(Li (y)) passing through the points (yi−1, hi−1), (yi , hi ), and (yi+1, hi+1) (if we need ∂yh0

to fulfill boundary conditions we take the Lagrange polynomial passing through the points
(y0, h0), (y1, h1), (y2, h2)). The derivatives ∂yu and ∂yyu are computed using the formula:

∂yu = ∂y(u p)

pu p−1 , (43)

∂yyu = ∂yy(u p) − p(p − 1)u p−2(∂yu)2

pu p−1 , (44)

where the derivatives ∂y(u p) and ∂yy(u p) are approximated by the derivatives of the Lagrange
polynomial (L p

i (y)) passing through the points (yi−1, u p
i−1), (yi , u p

i ), (yi+1, u p
i+1), and

p = 1
2 + 1

m is the order of degeneracy of the function u at the s2(t) (∂yu = −∞, while
0 > ∂y(u p) > −∞ at y = 1). Thus, in the neighborhood of y = 1 it is suitable to use (43), (44).

3.3 Approximation of Transport-Diffusion and Adsorption

The transport-diffusion and adsorption are realized in the whole sample (0, s2(t)) where
water is present. Since the flow characteristics are substantially used in the transport and
adsorption model, we use the same grid points in the space discretization as in the flow in
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(s1(t), s2(t)). Additionally, we have to add grid points in the fully saturated part (0, s1(t)).
Then we apply the MOL method. Again (for simplicity) we denote by {yi }M

i=0 the grid points
where {yi }M

i=0 belong to [0, s1(t)]. The flux qw of mass of the contaminant dissolved in the
water is expressed by (see (10))

qw = qw − θ

sp
D∂yw, (45)

where sp = s1(t) in the fully saturated zone and sp = s2(t) − s1(t) in the partially saturated
zone. Further, we assume that the first M grid points are moving and follow s1. The numerical
approximation of (10) reads as

θi∂twi + (qi sp − D0∂yθi − αL∂yqi )∂y Li (yi ) − (D0θi + αLqi )∂yy Li (yi )

sp2

− T C

sp
(∂yθiwi + ∂y Li (yi )θi ) = −ρ∂t Si , (46)

where Li is the Lagrange polynomial passing through the points (yi−1, wi−1),
(yi , wi ), (yi+1, wi+1), and

T C =
{

∂t s1(1 − yi ) + ∂t s2 yi : # in the partially saturated zone;
∂t s1 yi : # in the fully saturated zone.

(47)

Similarly, we approximate the adsorption part of our system

∂t Si = κ(�(wi ) − Si ) + T C

sp
∂y L̄ Si (yi ), (48)

where L̄ Si (y) is the Lagrange polynomial passing through the points (y j , S j ),

j = i −1, i, i +1. Flow characteristics appearing in the equations are approximated from the
flow model solution by cubic splines. After completing the system by boundary conditions
it is solved by a solver for stiff ODEs.

4 Numerical Experiments

In our numerical experiments we solve a realistic model in 1D with the following “standard”
parameters

Ks = 2.4.10−4, n = 2.81, α = −0.0189, θs = 0.4, θr = 0.02,

αL = 1, κ = 5, a = 1, b = 0.5. (49)

In the flow part we consider the van Genuchten–Mualem empirical model and the adsorption
is represented by the Freundlich adsorption isotherm.

4.1 Comparison of Our Results with Those by HYDRUS

Here we present some comparisons with the well-known and tested software HYDRUS (see
Šimunek et al.) using standard parameters which will be completed by various initial and
boundary conditions. We have used the version 4.0 which is available for 1D on the Internet.
At first, we consider a clean water column of 10 cm over a 10 cm long sample. The water
infiltrates by gravitation into the dry sample for 1400 s. We compare the saturation profile at
t = 1400—see Fig. 2a. In Fig. 2b we zoomed in the saturation profile in the neighborhood
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A Solution for Infiltration and Adsorption 233

of the wetness front s2. The blue and green curves correspond to our method with 401 and
13 grid points, respectively. The red curve is obtained by HYDRUS with 1001 grid points.
The green curve between two grid points is a segment since there are no other grid points
between them. If we draw the saturation u between the last two computed grid points and
take into account the order p of degeneracy in the form

u p(x) := (x − xi−1)u p(xi ) + (xi − x)u p(xi−1)

xi − xi−1
, (50)

then we obtain the brown curve between the last two grid points.
However, the wetting front represented by s2 is obtained very accurately, because the deter-
mination of s2 is explicitly implemented in our method. This fact supports the strength of
the application of interfaces. We note that almost the same results are obtained by HYDRUS
with 401 grid points. Less than 101 grid points in HYDRUS lead to higher discrepancies.
Using numerical data from HYDRUS (with 1001 grid points) we have reconstructed the time
evolution of the interfaces s2 and s1; comparisons with our results are drawn in Fig. 2c and d.

Fig. 2 a Profile of saturation at T = 1400, b zoomed in profile of saturation at T = 1400, c wetting front s2;
d full saturation front s1, e flux of contaminant, f zoomed in contaminant flux
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The blue and green curves correspond to 401 and 13 grid points in our method, respectively.
The red curves correspond to those from HYDRUS. The agreement in s1 is surprisingly good.
In the green curve, the density of grid points is a bit too small near to the s1 interface. The
speed of the s2 interface produced by HYDRUS is a bit higher than that of our method. In
the case of 401 grid points in HYDRUS this difference is about 15 % higher than for the case
of 1001 grid points. In Fig. 2e and f we compare the flux of the contaminant in the outflow
for time intervals (0, 2.5.106) and (0, 2.105), where the first part of the curve was zoomed
in. These last two figures ((e) and (f)) correspond to contaminant transport of a 3cm column
of contaminated water. There, some differences are visible, especially in the smoothness of
the curves. Similar to previous graphs, the colors correspond to the used software. Unlike
in previous graphs, our green curve was obtained using 101 grid points. The (small) lack of
smoothness of the red curve is also visible in Fig. 2a. This is strongly visible when com-
paring gradients and it is reflected in the outflow curves. The mass balance of the water and
contaminant are kept in both methods very well. Our method is intended to be used for the
solution of inverse problems for adsorption. It will be extended also for centrifugation, too
(to speed up the outflow measurements). As our numerical experiments with the water flow
into the dry region under centrifugation show, the saturation at the front s2 is significantly
sharper (see also Constales and Kacur 2004) than for the case when only the gravitational
driving force is applied. In this case, our method is accurate and efficient.

Some additional comparisons with HYDRUS will be presented in the next section.

Fig. 3 Time moments used in the following graphs: 10; 50; 100; 200; 400; 700; 1100; and 1436 s. a Time
evolution of the saturation, b Time evolution of the concentration, c Time evolution of the adsorption

123



A Solution for Infiltration and Adsorption 235

4.2 Presentation of Our Results in Some Experiments

Consider the contaminated water (w = 1) which infiltrates (with gravitational and capillary
pressure forces) from a 3 cm column into a 10 cm sample (porous underground).

If some of the “standard” parameters are changed in the following experiments, then we
shall note it. The solutions corresponding to HYDRUS are represented by chain-dotted
curves in the following graphs.

Experiment 1 In this experiment we let the contaminated water infiltrate up to the time
when the column is empty. In Figs. 3 and 4 we present the time evolution of the flow
(in terms of the effectve saturation), the concentration in the infiltrated water, the amount of
the adsorbed contaminant (in the soil), the contaminant mass distribution (in soil, water, and
column), and the time evolution of the adsorbed mass of the contaminant in 1 cm clays of
the sample. Additionally, we present the time evolution of the interfaces s1, s2. This experi-

Fig. 4 a Time evolution of the contaminant mass distribution: mass in column; mass in column and sample
(dissolved in water); total mass in column, sample, and adsorbed contaminant in porous media. b Time
evolution of the contaminant mass adsorbed in clays in < i, i + 1 > (i = 0, 1, . . . , 5) successively from the
top of the sample. c Time evolution of the position of the interface s1(t), d Time evolution of the position of
the interface s2(t)
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Fig. 5 Time moments used in the graphs (a), (c), (e): 10; 50; 100; 200; 400; 700; 1100; and 1436 s. Time
moments used in the graphs (b), (d), (f): 1436; 2000; 3000; 7000; 20000; 50000; 105; 2.105; and 106 s.
a, b Time evolution of the saturation, c, d Time evolution of the concentration, e, f Time evolution of the
adsorption

ment lasts up to the time when the column is empty. This is realized approximately at time
1436 seconds.

To understand Fig. 4a, make a perpendicular line to the x axis at some time point t . The
length of the segment between the x axis and the intersection with the blue curve is the amount
of the contaminant present in the column. The length of the segment between the blue curve
and the red curve is the amount of the contaminant present in the water that is saturated in
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Fig. 6 a Time evolution of the contaminant mass distribution: mass in column; mass in column and sample
(dissolved in water); mass in column, sample, and adsorbed contaminant in porous media.; total mass in
column, sample, adsorbed in porous media and in bottom tube. b Time evolution of the contaminant mass
adsorbed in clays in < i, i + 1 > (i = 0, 1, . . . , 9) successively from the bottom of the sample. c Time
evolution of the total outgoing water. d Time evolution of the concentration of outgoing water

the sample. Finally, the length of the segment between the red curve and the black top curve
is the amount of the adsorbed contaminant by the porous media.

Experiment 2 In our second experiment we let the contaminated water infiltrate from a
3 cm column, but we change the value of κ to κ = 5.10−3. In this case, we addition-
ally present in figures the time evolution of the outgoing water and its concentration and
we omit the time evolution of the interfaces s1 and s2. In the experiment, approximately
at time 1436 s the column is empty. We present the results of this experiment in Figs. 5
and 6.

It can be seen in Fig. 6c that because of the small value of κ (κ = 5.10−3), the con-
centration at the interface s2(t) is positive for a relatively long time, unlike in previous
experiments. However, differences between this experiment and the same experiment with
larger values of κ seem to diminish in time, so it may be very difficult to compute the approx-
imate value of κ from data at a later time (i.e., data from the outflow) unless κ is small
enough.
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5 Conclusions

An accurate and efficient numerical method is developed for the contaminant transport in
porous media in 1D applying the MOL method (reduction to ODE (DAE) systems). The
accuracy is based on moving grid points in the partially saturated zone which is bounded by
moving interfaces representing the full saturation and wetness fronts. Therefore, our method
requires only a few grid points to keep the solution accurate. The mathematical model for the
time evolution of the wetness front and approximations of gradients of saturation (gradient
is infinity at the wetness front) significantly use the order of degeneration linked with soil
parameters in the applied van Genuchten–Mualem empirical flow model. This method is a
very good candidate for solving the inverse problem where one wants to determine parameters
in the adsorption isotherm. Specifically, our method can be used to determine soil parameters.
In that case, we can utilize additional measurements data for s2 (e.g., by gamma rays), since
the saturation profile in its neighborhood is very sharp. Comparisons of our results with
those obtained by the well-known and well-tested software HYDRUS (based on another
method) are in good agreement and also support our method. We note that the method used
in HYDRUS can be applied in more dimensions, too. Our method cannot be extended to more
dimensional cases directly, except for very special cases in 2D (radially symmetric problems).
It is not known how to model interfaces in non-symmetric cases since the interface evolution
is significantly affected by its curvature.
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